
A TLA Solution to the RPC�Memory

Speci�cation Problem

Mart��n Abadi�� Leslie Lamport�� and Stephan Merz�

� Systems Research Center� Digital Equipment Corporation
� Institut f�ur Informatik� Technische Universit�at M�unchen

Abstract� We present a complete solution to the Broy�Lamport speci�
�cation problem� Our speci�cations are written in TLA�� a formal lan�
guage based on TLA� We give the high levels of structured proofs and
sketch the lower levels� which will appear in full elsewhere�

Table of Contents

Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� The Procedure Interface � � � � � � � � � � � � � � � � � � � � � � � �
��� The Module and its Parameters � � � � � � � � � � � � � � � � � � �
��� State Functions� State Predicates� and Actions � � � � � � � � � � �
��� Temporal Formulas � � � � � � � � � � � � � � � � � � � � � � � � � �

� A Memory Component � � � � � � � � � � � � � � � � � � � � � � � � 	
��� The Parameters � � � � � � � � � � � � � � � � � � � � � � � � � � � 

��� The Memory Speci�cation � � � � � � � � � � � � � � � � � � � � � � �
��� Solution to Problem � � � � � � � � � � � � � � � � � � � � � � � � � �


� Implementing the Memory � � � � � � � � � � � � � � � � � � � � � � �	
��� The RPC Component � � � � � � � � � � � � � � � � � � � � � � � � �	

The Parameters Module � � � � � � � � � � � � � � � � � � � � � � � �	
Problem �� The RPC Component�s Speci�cation � � � � � � � � � ��

��� The Implementation � � � � � � � � � � � � � � � � � � � � � � � � � ��
The Memory Clerk � � � � � � � � � � � � � � � � � � � � � � � � � � ��
The Implementation Proof � � � � � � � � � � � � � � � � � � � � � ��

� Implementing the RPC Component � � � � � � � � � � � � � � � � ��
��� A Lossy RPC � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� The RPC Implementation � � � � � � � � � � � � � � � � � � � � � � ��

The RPC Clerk � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
The Implementation Proof � � � � � � � � � � � � � � � � � � � � � ��

References � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

Index � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��



Introduction

Broy and Lamport have proposed a speci�cation and veri�cation problem �
��
It calls for specifying simple memory and RPC �remote procedure call� compo�
nents� and proving the correctness of two simple implementations� We present a
complete solution to this problem using TLA� the temporal logic of actions �����
We assume the reader is familiar with Broy and Lamport�s problem statement�

Since the problem is so much simpler than the ones encountered in real
applications� any approach that claims to be both practical and formal should
allow a completely formal solution� Our speci�cations are written in TLA��
a formal language based on TLA� Our proofs are completely formal� except
that some names are abbreviated for readability� We use a hierarchical proof
method ���� that is the most reliable way we know of to write hand proofs� Here�
we present only the higher levels of the proofs� Proofs carried down to the level
where each justi�cation involves instantiation of proof rules and simple predicate
logic will be available on a Web page ���� Although our proofs are careful and
detailed� neither they nor the speci�cations have been checked mechanically�
minor errors undoubtedly remain�

Rigor entails a certain degree of tedium� A complete programming language
requires boring details like variable declarations that can be omitted in informal
pseudo�code� Writing speci�cations is harder with a formal language than with
an informal approach�even one based on a formalism� Formal proofs that are
detailed enough to be easy to check are long and boring� However� rigor has
its advantages� Informal speci�cations can be ambiguous� The short� interesting
proofs favored by mathematicians are notoriously error prone� Our speci�cations
and proofs are rigorous� hence somewhat laborious�

We assume no prior knowledge of TLA or TLA�� Concepts and notations
are explained as they are introduced� the index on page �� can help the reader
�nd those explanations� TLA is described in detail in ����� and there are several
published examples of TLA� speci�cations ���� ���� Further information about
TLA and TLA� can be found on the Web ����

The problem is not very challenging for TLA� TLA�� or our proof style�
With our experience� it was possible to grind out the requisite speci�cations and
proofs without much thought� More di�cult was choosing from among the many
possible ways of writing the speci�cations� We tried to make the speci�cations
as clear as possible without unduly complicating the correctness proofs� We
bene�ted from studying the many preliminary solutions presented at a Dagstuhl
workshop on the speci�cation problem� In particular� we emulated some of these
solutions by writing our speci�cations as the composition of individual process
speci�cations� We also bene�ted from comments by Ketil St�len�

We found no signi�cant ambiguities in the problem statement� perhaps be�
cause we had �rst�hand knowledge of the authors� intent� However� we did dis�
cover some anomalies in the lossy�RPC speci�cation� which we discuss in Sec�
tion �� Our presentation parallels Broy and Lamport�s problem statement� In
particular� our section numbering corresponds to theirs� with the addition of
lower�level sections�



� The Procedure Interface

A TLA speci�cation is a temporal�logic formula� It expresses a predicate on
behaviors� where a behavior is an in�nite sequence of states and a state is an
assignment of values to variables� TLA� is a formal language for writing TLA
speci�cations� It introduces precise conventions for de�nitions and a module
system with name scoping that is modeled after those of programming languages�
In this paper� we describe TLA and TLA� as they are used�

TLA does not have any built�in communication primitives such as message
passing or data streams� One can use TLA to de�ne such primitives�� We be�
gin by specifying a procedure�calling interface in which a multiprocess caller
component interacts with a multiprocess returner component� In this section�
we present a module named ProcedureInterface that is meant to help specify
systems that use the procedure�calling interface� As we explain below� a system
may have several such interfaces� described by di�erent �copies� of the module�

We describe a rather arbitrary� abstract procedure�calling interface� One
might want a speci�cation that describes an actual procedure�calling software
standard� complete with register�usage conventions� One might also want a dif�
ferent high�level abstraction� We can convert our speci�cations into ones with a
di�erent interface abstraction by using an interface re�nement� as described in
��� page 
�
� and �	��

Our speci�cation makes precise one important detail that is not quite stated
in the informal speci�cation� We interpret the requirement�

�A�fter one process issues a call� other processes can issue calls to the
same component before the component issues a return from the �rst
call�

to imply that the same process cannot issue another call until the �rst one
returns�

��� The Module and its Parameters

Module ProcedureInterface is given in Figure � on the next page� The module
�rst declares some parameters� which are the free symbols that may appear
in the expressions de�ned by the module� By replacing de�ned symbols with
their de�nitions� all expressions de�ned in the module can be reduced to ones
containing only the parameters and the primitives of TLA�� The parameter ch
is the variable representing the interface� A variable parameter can have a
di�erent value in di�erent states of a behavior� TLA is an untyped logic� so
there are no type constraints on the values a variable can have� A constant

parameter is one that has the same value in every state of a behavior� The

� Like most logics� TLA uses variables� One could therefore say that TLA formulas
use shared variables as a communication primitive� In the same sense� one could say
that the equations x � y � � and x � y � � communicate via the shared variables x
and y �



module ProcedureInterface

parameters

PrIds �Args � constant
ch � variable

caller�p�
�

� hch�p��arg � ch�p��cbit i
rtrner�p�

�

� hch�p��res � ch�p��rbit i
Calling�p�

�

� ch�p��cbit �� ch�p��rbit

Call�p� v�
�

� � �Calling�p�
� ch�p��cbit � �� ch�p��rbit
� ch�p��arg � � v

Return�p� v�
�

� � Calling�p�
� ch�p��rbit � � ch�p��cbit
� ch�p��res � � v

LegalCaller
�

� � p � PrIds � �Calling�p� � ��� a � Args � Call�p� a��caller�p�
LegalReturner

�

� � p � PrIds � ��� v � Return�p� v��rtrner�p�

Fig� �� Module ProcedureInterface�

constant parameter PrIds is the set of all process identi�ers� for each p in PrIds �
process p of the caller component issues calls to the corresponding process p
of the returner component� The parameter Args is the set of all �syntactically
correct� procedure arguments�

Suppose some moduleM has a set P of process identi�ers and two procedure�
calling interfaces� represented by the variables x and y � with syntactically correct
argument values in sets S x and S y � respectively� Module M will include all the
de�nitions from module ProcedureInterface twice� with the following substitu�
tions for its parameters�

ch � x � PrIds � P � Args � S x

ch � y � PrIds � P � Args � S y

It is conventional to follow the parameter declarations with a horizontal bar�
These bars have no semantic signi�cance�

��� State Functions� State Predicates� and Actions

To model the procedure�calling interface� we let ch�p� be a �channel� over which
process p of the caller component interacts with process p of the returner compo�
nent� Our model uses a standard two�phase handshake protocol ���� illustrated in
Figure � on the next page� Channel ch�p� contains two �wires� controlled by the
caller�a signaling wire ch�p��cbit and an argument�passing wire ch�p��arg�and



initial
state

call
Read����

return
����

call
Write���� ��
�

ch�p��cbit � � � � � � � �
ch�p��arg � � h�Read�� ��i h�Read�� ��i h�Write�� ��� ��
i � � �
ch�p��rbit � � � � � � � �
ch�p��res � � � ���� ���� � � �

Fig� �� The two�phase handshake protocol for the channel ch�p��

two wires controlled by the returner�a signaling wire ch�p��rbit and a result�
returning wire ch�p��res �

In the standard two�phase handshake protocol shown in Figure �� the sig�
naling values ch�p��cbit and ch�p��rbit are bits� For simplicity� we allow them to
assume arbitrary values� since all that matters is whether or not they equal one
another�

The ProcedureInterface module de�nes the state function caller�p� to be the
pair hch�p��arg � ch�p��cbit i composed of the process p caller�s wires� A state func�
tion is an expression that may contain variables and constants� It is interpreted
semantically as a mapping from states to values� For example� ch�p��arg is the
state function that assigns to any state the arg record component of the pth
array element of the value that the state assigns to the variable ch�� The state
function rtrner�p� is similarly de�ned to be the pair composed of the returner�s
wires�

The module de�nes the state predicate Calling�p� to equal true i� �if and
only if� the values on the two signaling wires are unequal� A state predicate is
a boolean�valued expression that may contain variables and constants� it is in�
terpreted semantically as a mapping from states to booleans� For the handshake
protocol� Calling�p� equals true i� process p is in the middle of a procedure
call �the caller has issued a call and the returner has not yet returned��

Next comes the de�nition of the action Call�p� v�� An action is a boolean�
valued expression that may contain variables and constants� and the operator �

�prime�� which may not be nested� Semantically� it is interpreted as a boolean�
valued function on steps� where a step is a pair of states� Unprimed expressions
refer to the �rst �old� state� and primed expressions refer to the second �new�
state� For example� the action �x � ��� � y is true of a step i� � plus the value
assigned to x by the new state equals the value assigned to y by the old state�
Action Call�p� v� describes the issuing of a call with argument v by the process
p caller� More precisely� a step represents this event i� it is a Call�p� v� step �one
for which Call�p� v� equals true�� The �rst conjunct� in the de�nition asserts

� This value is unspeci�ed if the value assigned to ch by the state is not an array
whose pth element is a record with an arg component�

� We let a list of formulas bulleted with � or � denote the conjunction or disjunction
of the formulas� using indentation to eliminate parentheses� We also let� have lower
precedence than the other Boolean operators�



that a call on channel ch�p� is not in progress� The second conjunct asserts
that the new value of ch�p��cbit is di�erent from the old value of ch�p��rbit �
The �nal conjunct asserts that the new value of ch�p��arg equals v � Readers
familiar with conventional programming languages or state�transition systems
can think of Call�p� v� as an atomic statement or transition that is enabled
when �Calling�p� v� is true� that nondeterministically sets ch�p��rbit to any value
di�erent from ch�p��cbit � and that sets ch�p��arg to v �

Action Return�p� v� represents the issuing of a return with result v by the
process p returner� We do not distinguish in the interface description between
normal and exceptional returns�the distinction will be encoded in the result v �

��� Temporal Formulas

Module ProcedureInterface concludes by de�ning the two temporal formulas
LegalCaller and LegalReturner � Formula LegalCaller is de�ned in terms of for�
mulas of the form I ���N �v where I is a state predicate� N is an action �called
the next�state action�� and v is a state function� A temporal formula is true
or false on a behavior �an in�nite sequence of states�� Viewed as a temporal
formula� a predicate I is true on a behavior i� I is true in the �rst state� The
formula ��N �v is true of a behavior i� the action �N �v � which is de�ned to equal
N � �v � � v�� is true for every step �successive pair of states� in the behavior�
Thus� I � ��N �v asserts of a behavior that I is true in the �rst state and ev�
ery step is an N step or leaves the value of v unchanged� Formula LegalCaller
therefore asserts that� for every p in PrIds �

� The predicate �Calling�p� is true in the initial state� In other words� initially
there is no call in progress on channel ch�p��

� Every step is either a Call�p� a� step� for some a in Args � or else leaves
caller�p� unchanged� In other words� every step that changes the caller�s
part of the interface ch�p� is a Call�p� a� step with a legal argument a�

Formula LegalCaller speci�es what it means for a caller to obey the two�phase
handshake protocol� It speci�es the values of caller�p�� for p in PrIds � More pre�
cisely� LegalCaller is a temporal formula whose semantic meaning is a predicate
on behaviors that depends only on the values assigned by the states of a behav�
ior to the state functions caller�p� and ch�p��rbit � We interpret it as describing
the possible values of caller�p� as a function of the values of ch�p��rbit � Since we
consider caller�p� to represent the part of an interface controlled by the caller
component� we consider LegalCaller to be the speci�cation of a caller� However�
the reader should not confuse this intuitive interpretation of LegalCaller with
its formal semantics as a predicate on behaviors�

Formula LegalReturner is similar to LegalCaller � It asserts that� for every pro�
cess p� every change to the returner�s part of the interface ch�p� is a Return�p� v�
step for some value v � It is our speci�cation of what it means for a returner com�
ponent to obey the handshake protocol� Formula LegalReturner has no initial



predicate because we have arbitrarily assigned the initial condition on the chan�
nel to the caller�s speci�cation�� Unlike LegalCaller � which requires that the
arguments be elements of Args � formula LegalReturner does not place any re�
striction on the results returned� This asymmetry arises because the speci�cation
problem involves syntactic restrictions on arguments� but not on results� A more
realistic general�purpose interface speci�cation would include as an additional
parameter the set of legal results and would de�ne LegalReturner to assert that
results are in this set�

Composing a caller component and a returner component produces a system
in which the two components interact according to the protocol� In TLA� com�
position is conjunction ���� A simple calculation� using predicate logic and the
fact that � distributes over � and � � shows that LegalCaller � LegalReturner is
equivalent to

� p � PrIds � � �Calling�p�

� �

�
���
� � � a � Args � Call�p� a�
� rtrner�p�� � rtrner�p�

� � � v � Return�p� v�
� caller�p�� � caller�p�

�
���

hcaller�p��rtrner�p�i

This formula asserts that� for each process p� initially p is not processing a pro�
cedure call� and every step is either	 �i� a Call�p� a� step� for a legal argument
a� that leaves rtrner�p� unchanged� �ii� a Return�p� v� step that leaves caller�p�
unchanged� or �iii� a step that leaves both caller�p� and rtrner�p� unchanged�
The conjunction of the speci�cations of the two components therefore expresses
what we would expect to be the speci�cation of the complete handshake proto�
col� �The conjunction represents two components communicating over the same
channel because the speci�cations have the same free variable ch��

We are using a noninterleaving representation ���� in which a single step can
represent operations performed by several processes� This approach seems more
convenient for this speci�cation problem than the more traditional interleaving
representation� in which each step represents an operation of at most one process�
TLA is not inherently biased towards either speci�cation style�

� A Memory Component

In this section we give two speci�cations of the memory component described
in the problem statement� In both speci�cations� the memory component sup�
ports read and write operations� The two speci�cations di�er on whether the
memory component is reliable� the unreliable version can return memory�failure
exceptions� while the reliable version cannot�

� Each component	s speci�cation would have had an initial condition on its signaling
wire had we constrained the values of those wires
for example� by requiring signaling
values to be � or ��

� For any actions A and B � an A � B step is an A step or a B step�



��� The Parameters

For expository reasons� we split the speci�cations into two modules� The �rst
module� MemoryParameters � is given in Figure � on this page� It declares the
parameters of the memory speci�cation� The export statement is explained
below�

The parameters section declares the following parameters�

memCh This variable represents the procedure�calling interface to the memory�

MemLocs� MemVals� InitVal As in the problem statement� MemLocs is a set
of memory locations� MemVals is a set of values that can be stored in those
locations� and InitVal is the initial value of all locations�

Vals This is the set of syntactically legal argument values mentioned in the prob�
lem statement� In particular� we assume that the procedure�calling mecha�
nism allows only read and write calls with arguments in Vals �

PrIds The same as for the ProcedureInterface module�

The module next asserts assumption ParamAssump about the constant pa�
rameters� The assumption�s �rst conjunct states that MemLocs and MemVals
are subsets of Vals � so every semantically legal argument is also syntactically le�
gal� The second conjunct states that the strings �BadArg� and �MemFailure� are
not elements of MemVals � These strings are used to represent the correspond�
ing exceptions in the problem statement� For convenience� we let a successful
read operation return a memory value and represent an exception by returning
one of these strings� A successful write operation returns the string �OK�� The
third conjunct of ParamAssump asserts that InitVal is an element of MemVals �
a condition implied by the problem statement�

module MemoryParameters

export MemoryParameters� E

parameters

MemLocs �MemVals � InitVal �Vals �PrIds � constant
memCh � variable

assumption

ParamAssump
�

� � MemLocs 	MemVals 
 Vals
� f�BadArg�� �MemFailure�g �MemVals � fg
� InitVal � MemVals

LegalArgs
�

� �f�Read�g �Vals� 	 �f�Write�g �Vals �Vals�

include ProcedureInterface as E with ch � memCh�Args � LegalArgs

Fig� �� Module MemoryParameters �



The module de�nes LegalArgs to be the set of syntactically legal arguments
of procedure calls to the memory�

Finally� the include statement includes a copy of the ProcedureInterface
module� with each de�ned symbol X renamed as E �X � with memCh substituted
for the parameter ch� with LegalArgs substituted for the parameter Args � and
with PrIds �which is a parameter of the current module� implicitly substituted
for the parameter PrIds � For example� this statement includes the de�nitions�

E �caller�p�
�

� hmemCh�p��arg �memCh�p��cbit i
E �LegalCaller

�

� � p � PrIds �
� �E �Calling�p�
� ��� a � LegalArgs � E �Call�p� a��E �caller�p�

The E in the export statement asserts that all these included de�nitions are
exported� Exported symbols are the ones obtained by any other module that
includes theMemoryParameters module� TheMemoryParameters in the export
statement asserts that the symbols de�ned in the module itself�in this case�
ParamAssump and LegalArgs�are exported� Omitting an export statement in
a module M is equivalent to adding the statement export M �

��� The Memory Speci�cation

The speci�cations of the reliable and unreliable memories are contained in mod�
ule Memory of Figure � on the next page and Figure 
 on page ��� The module
begins by importing the MemoryParameters module� The import statement is
equivalent to simply copying the entireMemory module�its parameter declara�
tions� assumption� and de�nitions�into the current module� �However� imported
de�nitions are not automatically exported�� The export statement is needed be�
cause we want to use formula E �LegalCaller in asserting the correctness of an
implementation�

The reader should note the distinction between import and include� Im�
porting a module imports its de�nitions and parameters� Including a module
includes its de�nitions �with renaming�� but its parameters are instantiated� not
included�

We now explain our speci�cation in a top�down fashion� starting with the �nal
de�nition� Our speci�cations of the reliable and unreliable memory components
are the formulas RSpec and USpec de�ned in Figure 
� at the end of the module�
The two speci�cations are almost identical� so we now discuss only RSpec� the
reliable�memory speci�cation� Afterwards� we explain how USpec di�ers from it�

Formula RSpec is de�ned to equal ������mem� result � Inner �IRSpec� Intuitively� it
asserts of a behavior that there exist assignments of values for the variables mem
and result�possibly assigning di�erent values in each state of the behavior�for
which the behavior satis�es Inner �IRSpec� Formula ������mem� result � Inner �IRSpec
asserts nothing about the actual values of the variables mem and result � it
is the speci�cation obtained by �hiding� mem and result in the speci�cation
Inner �IRSpec�



module Memory

import MemoryParameters
export Memory� E

module Inner

parameters

mem� result � variable

NotAResult
�

� choose v �
v �� f�OK�� �BadArg�� �MemFailure�g 	MemVals

MInit�l�
�

� mem�l � � InitVal

PInit�p�
�

� result �p� � NotAResult

Read�p�
�

� � l � � E �Calling�p�
� memCh�p��arg � h�Read�� l i
� result ��p� � if l � MemLocs then mem�l �

else �BadArg�
� unchanged E �rtrner�p�

Write�p� l�
�

� � v � � E �Calling�p�
� memCh�p��arg � h�Write�� l � v i
� � � �l � MemLocs� � �v � MemVals�

� mem ��l � � v
� result ��p� � �OK�

� � ���l � MemLocs� � �v � MemVals��
� result ��p� � �BadArg�
� unchanged mem�l �

� unchanged E �rtrner�p�

Fail�p�
�

� � E �Calling�p�
� result ��p� � �MemFailure�
� unchanged E �rtrner�p�

Return�p�
�

� � result �p� �� NotAResult
� result ��p� � NotAResult
� E �Return�p� result �p��

RNext�p�
�

� Read�p� � �� l � Write�p� l�� � Return�p�

UNext�p�
�

� RNext�p� � Fail�p�

pvars�p�
�

� hE �rtrner�p�� result �p�i
RPSpec�p�

�

� � PInit�p�
� ��RNext�p��pvars�p�
� WFpvars�p��RNext�p�� � WFpvars�p��Return�p��

Fig� �� First part of module Memory �



UPSpec�p�
�

� � PInit�p�
� ��UNext�p��pvars�p�
� WFpvars�p��RNext�p�� � WFpvars�p��Return�p��

MSpec�l�
�

� MInit�l� � ��� p � PrIds � Write�p� l��mem
l�

IRSpec
�

� �� p � PrIds � RPSpec�p�� � �� l � MemLocs � MSpec�l��

IUSpec
�

� �� p � PrIds � UPSpec�p�� � �� l � MemLocs � MSpec�l��

RSpec
�

� ������mem� result � Inner �IRSpec

USpec
�

� ������mem� result � Inner �IUSpec

Fig� �� Second part of module Memory �

Since mem and result are not free variables of the speci�cation� they should
not be parameters of module Memory � We therefore introduce a submodule
named Inner having these variables as its parameters�� The symbol IRSpec de�
�ned in submodule Inner is named Inner �IRSpec when used outside the submod�
ule� The symbol Inner �IRSpec can appear only in a context in which mem and
result are declared�for example� in the scope of the quanti�er ������mem� result �

The bound variable mem represents the current contents of memory� mem�l �
equals the contents of memory location l � The bound variable result records
the activity of the memory component processes� For each process p� result �p�
initially equals NotAResult � which is a value di�erent from any that a proce�
dure call can return�
 When process p is ready to return a result� that result is
result �p�� �Even though it is ready to return� the process can �change its mind�
and choose a di�erent result before actually returning��

Formula IRSpec is the conjunction of two formulas� which describe two com�
ponents that constitute the memory component� The �rst component is responsi�
ble for communicating on the channel memCh and managing the variable result �
the second component manages the variable mem�

The second conjunct is itself the conjunction�� of formulasMSpec�l�� for each
memory location l � We view MSpec�l� as the speci�cation of a separate process
that manages mem�l �� Formula MSpec�l� has the familiar form I � ��N �v � It
asserts that MInit�l� holds in the initial state� and that every step is either a
Write�p� l� step for some process p� or else leaves mem�l � unchanged� The initial

� Instead of introducing a submodule� we could have made mem and result explicit
parameters of all the de�nitions in which they now occur free�

	 The de�nition of NotAResult in submodule Inner uses the operator choose� which
is the TLA� name for Hilbert	s � ��
�� We can de�ne NotAResult in this way because
the axioms of set theory imply that� for every set S � there exists a value not in S �

�
 Informally� we often think of � x � S � F �x� as the conjunction of the formulas F �x�
for all x in S �



result �p� �

NotAResult

�
�

�
�

result �p� ��

NotAResult

�
�

�
��

j

Y

Read�p� �

� l �Write�p� l�

Return�p�

U

Read�p� � � l �Write�p� l�

Fig� 	� A predicate�action diagram of pvars�p� for formula RPSpec�p� of the
Memory module�

predicate MInit�l� asserts that mem�l � equals InitVal � the initial memory value�
Action Write�p� l�� which we discuss below� is enabled only when the memory
component is processing a procedure call by process p to write some value v to
location l � a Write�p� l� step sets the new value of mem�l � to this v �

The �rst conjunct of IRSpec is the conjunction of formulas RPSpec�p� for
each process p in PrIds � We view RPSpec�p� as the speci�cation of a process
that manages the returner�s part of the channel memCh�p� and the variable
result �p�� Formula RPSpec�p� has the form I � ��N �v � F � A formula ��N �v
asserts that every step that changes v is an N step� but it does not require any
such steps to occur� It allows a behavior in which v never changes� We require
that certain changes do occur by conjoining an additional condition F � which
constrains what must eventually happen but does not disallow any individual
step� We call I ���N �v the safety condition of the speci�cation and F its fairness
or liveness condition� We now examine the safety condition of RPSpec�p�� its
fairness condition is considered below�

A formula I � ��N �v describes how the state function v may change� For
RPSpec�p�� the subscript v is the state function pvars�p�� which is de�ned to be
the pair hE �rtrner�p�� result �p�i� A pair changes i� one of its elements changes�
so RPSpec�p� describes changes to E �rtrner�p�� the returner�s part of the com�
munication channel memCh�p�� and to result �p��

We explain RPSpec�p� with the help of the predicate�action diagram ���� of
Figure � on this page� This diagram has the following meaning�

� The small arrow indicates that initially� result �p� equals NotAResult �

� When result �p� equals NotAResult � the pair pvars�p� can be changed only
by a Read�p� step or a Write�p� l� step� for some l � Such a step sets result �p�
unequal to NotAResult �

� When result �p� is not equal to NotAResult � the pair pvars�p� can be changed
only by a Read�p� step� some Write�p� l� step� or a Return�p� step� A
Read�p� or Write�p� l� step leaves result �p� unequal to NotAResult � while
a Return�p� step sets it to NotAResult �



Predicate�action diagrams are de�ned formally in ���� to represent TLA for�
mulas� The assertion that Figure � is a diagram for RPSpec�p� means that
RPSpec�p� implies the formula represented by the diagram� In general� one can
draw many di�erent diagrams for the same formula� Proving that a diagram is
a predicate�action diagram for a speci�cation helps con�rm our understanding
of the speci�cation� The proof for Figure � is trivial� This diagram is actually
equivalent to the safety part of RPSpec�p��

To complete our understanding of the safety part of RPSpec�p�� we must ex�
amine what steps are allowed by the actionsRead�p��Write�p� l�� and Return�p��
Action Read�p� is enabled when E �Calling�p� is true and memCh�p��arg equals
h�Read�� l i for some l � so the process p caller has called the read procedure with
argument l and the process p returner has not yet returned a result� If l is a
legal memory address� then a Read�p� step sets result �p� to mem�l �� otherwise it
sets result �p� to the string �BadArg�� The step leaves E �rtrner unchanged� �The
TLA� action unchanged v is de�ned to equal v � � v � for any state function
v �� Action Write�p� l� is similar� It is enabled when there is a pending request
to write some value v in memory location l � it sets result �p� to the appropriate
result and sets mem�l � to v i� the request is valid�

Action Return�p� issues the return of result �p� and resets result �p� to equal
NotAResult � The action is enabled i� result �p� is unequal to NotAResult and
action E �Return�p� is enabled� which is the case i� E �Calling�p� equals true�

Looking at Figure � again� we now see that returner process p goes through
the following cycle� It waits �with result �p� equal to NotAResult� until a pro�
cedure call occurs� It then does one or more internal Read�p� or Write�p� l�
steps� which choose result �p�� Finally� it returns result �p� and resets result �p� to
NotAResult � Allowing multiple Write�p� l� steps is important because mem�l �
could be changed between those steps by Write�q � l� steps for some q di�erent
from p� SuchWrite�q � l� steps are allowed by Figure � �and by RPSpec�p�� if they
do not change pvars�p�� It makes no di�erence to the �nal speci�cation RSpec
whether or not multiple Read�p� steps are allowed� The changes to memCh are
the same as if only the last one were performed� and memCh is the only free
variable of RSpec� Allowing multiple Read�p� steps simpli�es the speci�cation a
bit�

This completes our explanation of the safety condition of RPSpec�p�� We now
consider the fairness condition� The safety condition of RPSpec�p� implies that
the steps described by Figure � are the only ones that are allowed to happen�
We want the fairness condition to assert that they must happen� In particular�
we want to assert the following two requirements� �L�� after a procedure call has
been issued� the transition out of the result �p� � NotAResult state eventually
occurs� and �L�� the transition back to that state eventually occurs�

These requirements are expressed with weak fairness formulas of the form
WFv �A�� Such a formula asserts that if the action A� �v � �� v� remains continu�
ally enabled� then an A� �v � �� v� step must occur� In other words� if it remains
possible to take an A step that changes v � then such a step must eventually be
taken�



Condition L� is implied by WFpvars�p��RNext�p��� To see this� suppose that
result �p� equals NotAResult and a read or write call is issued� Then Read�p� or
some Write�p� l� action is enabled� so RNext�p� is enabled� Assuming that the
caller obeys the handshake protocol� action RNext�p� will remain enabled until
a Read�p� or Write�p� l� step occurs� Formula WFpvars�p��RNext�p�� therefore
implies that a RNext�p� step does occur� and that step can only be the desired
Read�p� or Write�p� l� step�

Formula WFpvars�p��RNext�p�� implies that� while result �p� �� NotAResult
remains true� RNext�p� steps must keep occurring� However� those steps could be
Read�p� or Write�p� l� steps� �Read�p� steps can change pvars�p� if intervening
steps by other processes keep changingmem�l ��� FormulaWFpvars�p��Return�p���
the second conjunct of RPSpec�p��s fairness condition� asserts that a Return�p�
step must eventually occur when result �p� �� NotAResult holds�

There are other possible fairness conditions for RPSpec�p�� Two other ob�
vious choices are obtained by replacing WFpvars�p��RNext�p�� with one of the
following�

WFpvars�p��Read�p�� � WFpvars�p��� l � Write�p� l��

WFpvars�p��Read�p�� � �� l � WFpvars�p��Write�p� l���

It is not hard to check that the conjunction of E �LegalCaller �the speci�ca�
tion that the caller obeys the handshake protocol� and the safety condition of
RPSpec�p� implies that both formulas are equivalent to WFpvars�p��RNext�p���
for any p in PrIds � We care what the memory component does only when the
caller obeys the protocol� Hence� any of these three choices of fairness conditions
for RPSpec�p� yield essentially the same speci�cation� �The three fairness con�
ditions need not be equivalent on a behavior in which memCh�p��arg changes
while the memory is processing a procedure call by process p��

Weak fairness is a standard concept of concurrency ��� �	�� The reader who is
not already familiar with it may �nd fairness conditions di�cult to understand�
Fairness can be subtle� and it is not obvious why we express it in TLA with
WF formulas� For example� it might seem easier to express L� by writing the
temporal�logic formula

�result �p� � NotAResult� � E �Calling�p� � �result �p� �� NotAResult�

which asserts that if result �p� ever equals NotAResult when E �Calling�p� is true�
then it must eventually become unequal to NotAResult � We have found that
the use of arbitrary temporal�logic formulas makes it easy to write incorrect
speci�cations� and using WF formulas helps us avoid errors�

Finally� let us consider the speci�cation USpec of the unreliable memory
component� It is identical to RSpec except it has action UNext�p� instead of
RNext�p� as its next�state action� Action UNext�p� di�ers from RNext�p� by
also allowing internal Fail�p� steps� which set result �p� to �MemFailure�� Such
steps can occur instead of� before� after� or between Read�p� or Write�p� l�
steps� We could have replaced RNext�p� with UNext�p� in the fairness condition�



LegalCaller implies that the two de�nitions of USpec are equivalent� However�
it might seem odd to require the eventual occurrence of a step that may be a
failure step�

��� Solution to Problem �

�a� Formulas RSpec and USpec are what we call component speci�cations� They
describe a system containing a properly operating �reliable or unreliable� mem�
ory component� Whether they constitute the speci�cations of a memory depends
on what the speci�cations are for�

Component speci�cations can be used to describe a complete system in which
all the components function properly� allowing us to prove properties of the
system� The simplest such complete�system speci�cation of a system containing
a reliable memory component is RSpec � E �LegalCaller � which asserts that the
memory component behaves properly and the rest of the system follows the
handshake protocol�

Another possible use of a memory speci�cation is to serve as a contract
between the user of the memory and its implementor� Such a speci�cation
should be satis�ed by precisely those behaviors that represent physical histo�
ries in which the memory ful�lls its obligations� Formula RSpec cannot serve as
such a speci�cation because it says nothing about the memory�s environment�
A real memory that uses the two�phase handshake protocol will display com�
pletely unpredictable behavior if its environment does not correctly follow the
protocol� To be implementable� the speci�cation must assert only that RSpec is
satis�ed if the memory�s environment satis�es the caller�s part of the handshake
protocol�in other words� if E �LegalCaller is satis�ed� We might therefore expect
the speci�cation of a reliable memory to be E �LegalCaller 
 RSpec� However�
for reasons explained in ���� we instead write this speci�cation as the formula
E �LegalCaller ��� RSpec� This formula means roughly that RSpec remains true
as long as E �LegalCaller does� Such a formula is called an assumption�guarantee
speci�cation �
�� the memory guarantees to satisfy its component�speci�cation
RSpec as long as the environment assumption E �LegalCaller is satis�ed�

When we present a component speci�cation as a solution to one of the spec�
i�cation problems� we indicate its environment assumption� Writing the corre�
sponding assumption�guarantee speci�cation is then trivial�

When we write a component speci�cation� we think of steps satisfying the
speci�cation�s next�state action as representing operations performed by that
component� We could make this an explicit assumption by formally attributing
every step to either the component or its environment� as described in ���� How�
ever� whether the component or its environment actually performs an operation
is a question of physical reality� and the connection between a mathematical
speci�cation and reality can never be made completely formal�

The assumption ParamAssump about the parameters is not part of our mem�
ory component speci�cations� since the formulas RSpec and USpec are not de�
�ned in terms of ParamAssump� We could weaken the speci�cations by adding
ParamAssump as an assumption and writing� for example� ParamAssump 




RSpec� We do not need to do so� as we will see below� putting the assumption
ParamAssump into the Memory module allows us to use it when proving the
correctness of an implementation of the memory component�

�b� In TLA� implementation is implication� To prove that a reliable memory im�
plements an unreliable one� it su�ces to prove the theorem RSpec 
 USpec�
The proof is easy� expanding the de�nitions shows that it su�ces to prove
��RNext�p��pvars�p� 
 ��UNext�p��pvars�p�� which is trivial since RNext�p� ob�
viously implies UNext�p��

In general� we would not expect such an implication to be valid� For exam�
ple� it would not have been valid had we written WFpvars�p��UNext�p�� instead
of WFpvars�p��RNext�p�� in the fairness condition of UPSpec�p�� Component
speci�cations like RSpec and USpec describe how the component should be�
have when its environment behaves properly� They do not constrain the en�
vironment�s behavior� and they may allow bizarre behaviors when the envi�
ronment behaves improperly� A priori� there is no reason why the particular
bizarre behaviors allowed by RSpec as the result of an incorrectly function�
ing environment should also be allowed by USpec� Hence� we would expect
RSpec 
 USpec to be true only for those behaviors satisfying the memory�s
environment speci�cation� E �LegalCaller � We would therefore expect to prove
only E �LegalCaller 
 �RSpec 
 USpec�� which is equivalent to

E �LegalCaller � RSpec 
 USpec ���

We can also phrase implementation in terms of assumption�guarantee speci��
cations� Such speci�cations are satis�ed by precisely those behaviors in which
the memory meets its obligation� We would expect the assumption�guarantee
speci�cation of the reliable memory to imply that of the unreliable memory�

�E �LegalCaller ��� RSpec�
 �E �LegalCaller ��� USpec� ���

The relation between the two forms of implementation conditions exempli�ed by
��� and ��� is investigated in ���� Because our two memory�component speci�ca�
tions are so similar� we can prove RSpec 
 USpec� which implies ��� and ����

�c� If the memory is implemented with unreliable components that can fail
forever� then there is no way to guarantee that anything but �MemFailure� ex�
ceptions will ever occur� �For example� this will be the case if it is implemented
with an RPC component that always returns �RPCFailure� exceptions��

We can easily de�ne a memory that guarantees eventual success� We do
so by requiring that if enough calls of some particular kind are issued� then
one of them eventually succeeds� Di�erent conditions are obtained by di�erent
choices of the kind of calls�for example� calls to a particular memory location�
or reads by a particular process� Such conditions can be expressed using strong
fairness formulas of the form SFv �A�� This formula asserts that if A � �v � �� v�
is enabled often enough� then an A � �v � �� v� step must occur� �Strong fairness
is stronger than weak fairness because it requires a step to occur if the action is



enabled often enough� even if the action does not remain continuously enabled��
For example� to strengthen the speci�cation to require that� if process p keeps
issuing calls� then it will eventually receive a result other than �MemFailure�� we
simply replace the fairness condition of UPSpec�p� by�

� SFpvars�p��Read�p� � �� l � Write�p� l���

� SFpvars�p��Return�p� � �result �p� �� �MemFailure���

To solve Problem � �proving the correctness of a memory implementation�� we
would then need to add a corresponding liveness condition to the RPC compo�
nent�

� Implementing the Memory

The memory implementation is obtained by composing a memory clerk compo�
nent� an RPC component� and a reliable memory component� The memory clerk
translates memory calls into RPC calls� and optionally retries RPC calls when
they result in RPC failures� In this section we describe the RPC and the memory
clerk components� and then prove the correctness of the implementation�

��� The RPC Component

The RPC component connects a sender to a receiver� As with the memory com�
ponent� we split its speci�cation into two modules�

The Parameters Module The speci�cation of the RPC component begins
with module RPCParameters in Figure 	 on the next page� the module declares
parameters and both makes and includes some de�nitions� The RPCParameters
module imports the module Naturals � a prede�ned module that de�nes the nat�
ural numbers and the usual operators on them� It then imports the Sequences
module� which de�nes operators on �nite sequences� In TLA�� an n�tuple
hv�� � � � � vn i is a function whose domain is the set f�� � � � �ng of natural numbers�
where hv�� � � � � vn i�i � equals v i � for � � i � n��� The Sequences module repre�
sents sequences as tuples� The module appeared in ���� �without the de�nition
of Seq � which was not needed there� and is given without further explanation
in Figure 
 on the next page� It de�nes the usual operators Head � Tail � � �con�
catenation�� and Len �length� on sequences� as well as the operator Seq � where
Seq�S � is the set of sequences of elements in S � �The values of Head�s� and
Tail�s� are not constrained when s is the empty sequence��

The parameters declared in module RPCParameters have the following in�
terpretations�

�� TLA� uses square brackets to denote function application� An �array variable� is
just a variable whose value is a function�



module RPCParameters

export RPCParameters� Snd� Rcv
import Naturals� Sequences

parameters sndCh� rcvCh � variable
Procs �ArgNum�Vals �PrIds � constant

assumption ParamAssump
�

� ArgNum � �Procs � Nat �

LegalSndArgs
�

� f�RemoteCall�g � string� Seq�Vals�

LegalRcvArgs
�

�
fs � Seq�Procs 	 Vals� � � Len�s� � �

� Head�s� � Procs
� Tail�s� � Seq�Vals�
� Len�s� � � �ArgNum�Head�s�� g

include ProcedureInterface as Snd with ch � sndCh�Args � LegalSndArgs
include ProcedureInterface as Rcv with ch � rcvCh�Args � LegalRcvArgs

Fig� 
� Module RPCParameters �

module Sequences

import Naturals

OneTo�n�
�

� fi � Nat � �� � i� � �i � n�g
Seq�S �

�

� union f�OneTo�n�� S � � n � Natg
Len�s�

�

� choose n � �n � Nat� � ��Domain s� � OneTo�n��

Head�s�
�

� s ���

Tail�s�
�

� �i � OneTo�Len�s�� �� �� s �i � ���

�s� � �t� �

� �i � OneTo�Len�s� � Len�t�� �� if i � Len�s�
then s �i �
else t �i � Len�s�� �

Fig� �� Module Sequences �



sndCh The procedure�calling interface between the sender and the RPC com�
ponent�

rcvCh The procedure�calling interface between the RPC component and the
receiver�

Procs� ArgNum As in the problem statement� Procs is a set of legal procedure
names and ArgNum is a function that assigns to each legal procedure name
its number of arguments�

Vals The set of all possible syntactically valid arguments�

PrIds The same as for the ProcedureInterface module�

Assumption ParamAssump asserts that ArgNum is a function with domain Procs
and range a subset of the set Nat of natural numbers� �The de�nition of Nat
comes from the Naturals module��

The module next de�nes LegalSndArgs to be the set of syntactically valid
arguments with which the RPC component can be called� Calls to the RPC
component take two arguments� the �rst of which is an element of string�
the set of all strings� and the second of which is a sequence of elements in
Vals � We use the same convention as in the memory speci�cation� that the
argument of a procedure call is a tuple consisting of the procedure name followed
by its arguments� The RPC component has a single procedure� whose name is
�RemoteCall��

The module de�nes LegalRcvArgs to be the set of syntactically valid argu�
ments with which the RPC component can call the receiver� These consist of all
tuples of the form hp� v�� � � � � vn i with p in Procs � the v i in Vals � and n equal
to ArgNum�p��

Finally� the module includes two copies of the ProcedureInterface module�
one for each of the interfaces� with the appropriate instantiations� The export
statement �at the beginning of the module� exports these included de�nitions�

Problem �� The RPC Component
s Speci�cation The speci�cation of
the RPC component appears in module RPC of Figure �� on page ��� It is the
formula ������ rstate � Inner �ISpec� where ISpec is de�ned in a submodule named
Inner �

We explain the speci�cation ISpec with the aid of the diagram of Figure �
on the next page� This is a predicate�action diagram for ISpec of all changes
to vars�p�� where p is any element of PrIds � The state function vars�p� is the
triple hrstate�p��Snd �rtrner�p��Rcv �caller�p�i that forms the state of the RPC
component�s process p� The dotted arrows are not formally part of the diagram�
The initial�condition arrow indicates obligations of both the RPC component
and its environment� the other dotted arrows represent state changes caused
by the environment that do not change the RPC component�s state� �Recall
that � � �Calling�p� can be changed by either the caller changing � � �caller�p�
or the returner changing � � �rtrner�p��� The top dotted arrow represents the



� �Snd �Calling�p�
� �Rcv �Calling�p�
� rstate�p� � �A�

�
�

�
�

� Snd �Calling�p�
� �Rcv �Calling�p�
� rstate�p� � �A�

�
�

�
�

�
j

Y

Reject�p� � Fail�p�

� Snd �Calling�p�
� �Rcv �Calling�p�
� rstate�p� � �B�

�
�

�
�

� Snd �Calling�p�
� Rcv �Calling�p�
� rstate�p� � �B�

�
�

�
�

�

Reply�p� � Fail�p�

�

Forward�p�

�

Fig� �� A predicate�action diagram of vars�p� for formula ISpec of module RPC �
where p is an element of PrIds � �The dotted arrows are not formally part of the
diagram��

sender�s action of calling the RPC component� which makes Snd �Calling�p� true�
The bottom dotted arrow represents the receiver�s return action� which makes
Rcv �Calling false�

The solid arrows �the real arrows of the predicate�action diagram� repre�
sent steps of process p of the RPC component� The Forward�p� action relays
the call to the receiver� making Rcv �Calling�p� true� The Fail�p� action returns
�RPCFailure�� The Reject�p� action returns �BadCall� without relaying the re�
quest� The Reply�p� action returns to the sender the result returned by the
receiver� The variable rstate is needed to distinguish the upper right and lower�
left states� The values �A� and �B� are arbitrary� any two values can be used�

The speci�cation Spec of the RPC component appears in module RPC
of Figure �� on the next page� It is similar enough to the memory speci��
cation that it should require little additional explanation� The de�nition of
RelayArg makes use of the way sequences are represented as tuples� and it may
seem a little obscure� When the sender�s process p has called the RPC com�
ponent� RelayArg�p� is the argument with which the RPC component should
call the receiver� For example� if the RPC component is called with argument
h�RemoteCall�� �Write�� h�	�p�ii� then RelayArg�p� equals h�Write�� �	�

p
�i�

In the de�nitions of the actions� we have eliminated some redundant instances of
the conjuncts Snd �Calling�p� and �Rcv �Calling�p� that appear in the predicate�
action diagram� Snd �Calling�p� is implied by Snd �Return�p� � � ��� and the dia�
gram shows that �Rcv �Calling�p� is implied by rstate�p� � �A� in every reach�
able state�

Formula Spec of the RPC module is the component speci�cation of the RPC
component� The component�s environment speci�cation is Snd �LegalCaller �
Rcv �LegalReturner � As described above� the conjunction of these two formulas



module RPC

import RPCParameters� Naturals� Sequences
export RPC� Snd� Rcv

module Inner

parameters

rstate � variable

Init�p�
�

� �rstate�p� � �A�� � �Rcv �Calling�p�
RelayArg�p�

�

� hsndCh�p��arg ���i � sndCh�p��arg ���
Forward�p�

�

� � Snd �Calling�p� � �rstate�p� � �A��
� RelayArg�p� � LegalRcvArgs
� Rcv �Call�p�RelayArg�p��
� rstate ��p� � �B�
� unchanged Snd �rtrner�p�

Reject�p�
�

� � rstate�p� � �A�
� RelayArg�p� �� LegalRcvArgs
� Snd �Return�p� �BadCall��
� unchanged hrstate�p��Rcv �caller�p�i

Fail�p�
�

� � �Rcv �Calling�p�
� Snd �Return�p� �RPCFailure��
� rstate ��p� � �A�
� unchanged Rcv �caller�p�

Reply�p�
�

� � �Rcv �Calling�p� � �rstate�p� � �B��
� Snd �Return�p� rcvCh�p��res�
� rstate ��p� � �A�
� unchanged Rcv �caller�p�

Next�p�
�

� Forward�p� �Reject�p� � Fail�p� �Reply�p�

vars�p�
�

� hrstate�p��Snd �rtrner�p��Rcv �caller�p�i
ISpec

�

� � p � PrIds � Init�p� � ��Next�p��vars�p� � WFvars�p��Next�p��

Spec
�

� ������ rstate � Inner �ISpec

Fig� ��� The speci�cation of the RPC component�



is the speci�cation of a complete system consisting of an RPC component and a
sender and receiver that obey the handshake protocol� combining the formulas
with the ��� operator yields an assumption�guarantee speci�cation of the RPC
component�

��� The Implementation

The Memory Clerk We now present the speci�cation of the memory clerk�
which is quite similar to that of the RPC component� It begins with module
MemClerkParameters of Figure �� on this page� The module declares the fol�
lowing parameters�

sndCh� rcvCh The procedure�calling interfaces between the clerk and the mem�
ory�s caller� and between the clerk and the RPC component�

Vals� PrIds The same as for the MemoryParameters and ProcedureInterface
modules� respectively�

The de�nitions of LegalSndArgs and LegalRcvArgs and the inclusion of two copies
of the ProcedureInterface module serve the same purpose as they do in the
RPCParameters module�

The speci�cation of the memory clerk is a formula ������ cstate � Inner �ISpec�
The formula ISpec is described by the predicate�action diagram of Figure �� on
the next page� which is similar to that of Figure � �page ���� The Reply�p� and
Forward�p� actions play the same role as in the RPC component�s speci�cation�
Action Retry�p� retries an RPC call that has yielded an RPC failure�

The clerk�s speci�cation Spec appears in Module MemClerk of Figure �� on
page ��� The safety part can be deduced from the predicate�action diagram as we
did for the RPC component� The liveness part is a bit trickier� We want to require
that the clerk eventually returns from a call� assuming the RPC component even�
tually returns from each call� Weak fairness on the Forward�p� action ensures

module MemClerkParameters

export MemClerkParameters� Snd� Rcv

parameters sndCh� rcvCh � variable
PrIds �Vals � constant

LegalSndArgs
�

� �f�Read�g �Vals� 	 �f�Write�g �Vals �Vals�

LegalRcvArgs
�

� f�RemoteCall�g � f�Read�� �Write�g � Seq�Vals�

include ProcedureInterface as Snd with ch � sndCh�Args � LegalSndArgs
include ProcedureInterface as Rcv with ch � rcvCh�Args � LegalRcvArgs

Fig� ��� Module MemClerkParameters �



� �Snd �Calling�p�
� �Rcv �Calling�p�
� cstate�p� � �A�

�
�

�
�

� Snd �Calling�p�
� �Rcv �Calling�p�
� cstate�p� � �A�

�
�

�
�

�

Retry�p�

j

Y

� Snd �Calling�p�
� �Rcv �Calling�p�
� cstate�p� � �B�

�
�

�
�

� Snd �Calling�p�
� Rcv �Calling�p�
� cstate�p� � �B�

�
�

�
�

�

Reply�p�

�

Forward�p�

�

Fig� ��� A predicate�action diagram of vars�p� for formula ISpec of module
MemClerk � where p is an element of PrIds � �The dotted arrows are not formally
part of the diagram��

progress from the upper�right to the lower�right state of the predicate�action dia�
gram� Strong fairness of Reply�p� is required to ensure eventual progress from the
lower�left to the upper�left state� weak fairness would allow behaviors in which
the clerk keeps performing Retry�p� steps without ever performing a Reply�p�
step�

The Implementation Proof We now formally assert that the composition
of a memory clerk� an RPC component� and a reliable memory implements an
unreliable memory� and we describe the proof of that assertion�

Since implementation is implication� the assertion that every behavior al�
lowed by an implementation Imp satis�es a speci�cation Spec is expressed by
the formula Imp 
 Spec� However� as discussed in Section ���� we expect to
prove the correctness of an implementation only under the assumption that the
environment behaves correctly� If Env is the environment�s speci�cation� then
we expect Imp 
 Spec to be satis�ed only by behaviors that satisfy Env � Thus�
correctness of the implementation means that Env � Imp 
 Spec is valid� Com�
position is conjunction� so validity of this formula asserts that every behavior
allowed by the composition of the environment and the implementation satis�es
the speci�cation�

The assertion that the composition of the clerk� RPC component� reliable
memory� and environment speci�cations implies the unreliable memory�s spec�
i�cation is theorem Impl of module MemoryImplementation in Figure �� on
page �
� The speci�cation of the unreliable memory�s environment is formula
E �LegalCaller � included from module ProcedureInterface by the imported mod�
uleMemory � The composition is described schematically by the following picture�



E �LegalCaller

Environment

C �Spec

Clerk

R�Spec

RPC Component

M �RSpec

Reliable Memory

��memCh �� crCh �� rmCh

When composing two components by conjoining their speci�cations� the com�
ponents are �connected� by instantiating their corresponding interface variable
parameters with the same variable� The implementing module�s speci�cations
have been included with renaming� the speci�cation USpec of the memory is
imported from the Memory module�

The theorem statement asserts that the formula named Impl is a conse�

module MemClerk

import MemClerkParameters� Sequences

module Inner

parameters

cstate � variable

Init�p�
�

� �cstate�p� � �A�� � �Rcv �Calling�p�
RelayArg�p�

�

� h�RemoteCall��Head�sndCh�p��arg��Tail�sndCh�p��arg�i
ReplyVal�p�

�

� if rcvCh�p��res � �RPCFailure� then �MemFailure�
else rcvCh�p��res

Forward�p�
�

� � Snd �Calling�p� � �cstate�p� � �A��
� Rcv �Call�p�RelayArg�p��
� cstate ��p� � �B�
� unchanged Snd �rtrner�p�

Retry�p�
�

� � �cstate�p� � �B�� � �rcvCh�p��res � �RPCFailure��
� Rcv �Call�p�RelayArg�p��
� unchanged hcstate�p��Snd �rtrner�p�i

Reply�p�
�

� � �Rcv �Calling�p� � �cstate�p� � �B��
� Snd �Return�p�ReplyVal�p��
� cstate ��p� � �A�
� unchanged Rcv �caller�p�

Next�p�
�

� Forward�p� � Retry�p� � Reply�p�

vars�p�
�

� hcstate�p��Snd �rtrner�p��Rcv �caller�p�i
ISpec

�

� � p � PrIds �
� Init�p� � ��Next�p��vars�p�
� WFvars�p��Forward�p�� � SFvars�p��Reply�p��

Spec
�

� ������ cstate � Inner �ISpec

Fig� ��� The component speci�cation of the memory clerk�



module MemoryImplementation

import MemoryParameters� Memory

parameters

crCh� rmCh � variable

assumption

FailureNotAValue
�

� �RPCFailure� �� MemVals

Procs
�

� f�Read�� �Write�g
ArgNum

�

� �i � Procs �� case �i � �Read��� �� �i � �Write��� ��

include RPC as R with sndCh � crCh� rcvCh � rmCh

include MemClerk as C with sndCh � memCh� rcvCh � crCh

include Memory as M with memCh � rmCh

theorem

Impl
�

� E �LegalCaller � C �Spec � R�Spec �M �RSpec 
 USpec

Fig� ��� Module MemoryImplementation�

quence of the assumptions FailureNotAValue�� and ParamAssump �imported
from module MemoryParameters�� and the laws of TLA�

For convenience� we have gathered many of the de�nitions imported and
included by module MemoryImplementation in Figure �
 on page ��� In this
�gure and in our proof� we use the following naming conventions� �i� we eliminate
the �Inner �� from symbol names�for example� writing C �Retry�p� instead of
C �Inner �Retry�p�� and �ii� if X is the name of a formula of the form � p � PrIds �
Y � then we let X �p� denote the formula Y�as in R�ISpec�p�� The �gure also
de�nes the following additional symbols� pv � m� e� c� r � and E �Next ���

Theorem Impl has the form H 
 ������mem� result � G � In predicate logic� one
proves a formula � y �P�y�
 � x �Q�x � by proving P�y�
 Q�x� for a suitable
instantiation x of x � In temporal logic� the instantiation is called a re�nement
mapping ���� To prove Impl � we de�ne a pair of state functions mem and result
and prove F 
 G � where F is the formula obtained by removing the existential
quanti�ers from H � and G is the formula obtained by substituting mem and
result for mem and result in G �

�� We believe the theorem to be correct without assumption FailureNotAValue� but our
proof uses the assumption�

�� We de�ne a number of operators with implicit parameters that are not parameters of
module MemoryImplementation
for example� the parameters p and result �p� that
appear in the de�nition of m� If we were being truly formal� such de�nitions would
occur in modules that made the parameters explicit� and these modules would then
be included in the proof in contexts where the parameters are declared�



The Speci�cation

Unreliable Memory Component �imported from Memory�

pv
�

� pvars�p�

UNext�p�
�

� Read�p� � �� l � Write�p� l�� � Return�p� � Fail�p�

UPSpec�p�
�

� � PInit�p� � ��UNext�p��pv
� WFpv �RNext�p�� �WFpv �Return�p��

MSpec�l�
�

� MInit�l� � ��� p � PrIds � Write�p� l��mem
l�

IUSpec
�

� � � p � PrIds � UPSpec�p�
� � l � MemLocs � MSpec�l�

USpec
�

� ������mem� result � IUSpec

The Implementation

The Environment �included from ProcedureInterface via import of Memory�

e
�

� E �caller�p�

E �Next�p�
�

� � a � LegalArgs � E �Call�p� a�

E �LegalCaller
�

� � p � PrIds � �E �Calling�p� � ��E �Next�p��e

Clerk �included from MemClerk�

c
�

� C �vars�p�

C �Next�p�
�

� C �Forward�p� � C �Retry�p� � C �Reply�p�

C �ISpec�p�
�

� � C �Init�p� � ��C �Next�p��c
� WFc�C �Forward�p�� � SFc�C �Reply�p��

C �Spec
�

� ������ cstate � � p � PrIds � C �ISpec�p�

RPC Component �included from RPC �

r
�

� R�vars�p�

R�Next�p�
�

� R�Forward�p� � R�Reject�p� � R�Fail�p� �R�Reply�p�

R�ISpec�p�
�

� R�Init�p� ���R�Next�p��r �WFr �R�Next�p��

R�Spec
�

� ������ rstate � � p � PrIds � R�ISpec�p�

Reliable Memory Component �included from Memory�

m
�

� M �pvars�p�

M �RNext�p�
�

� M �Read�p� � �� l � M �Write�p� l�� �M �Return�p�

M �RPSpec�p�
�

� � M �PInit�p� � ��M �RNext�p��m
� WFm�M �RNext�p�� �WFm�M �Return�p��

M �MSpec�l�
�

� M �MInit�l� � ��� p � PrIds � M �Write�p� l��mem
l�

M �IRSpec
�

� � � p � PrIds � M �RPSpec�p�
� � l � MemLocs � M �MSpec�l�

M �RSpec
�

� ������mem� result � M �IRSpec

Fig� ��� Formulas de�ned in module MemoryImplementation� plus a few extra
de�nitions�



For our proof� we let mem equal mem �which comes from M �RSpec�� To
de�ne result � we must introduce a history variable ���� Intuitively� a history vari�
able a is one that is added to remember what happened in the past� Formally�
proving F 
 G by �adding a history variable a� means choosing a variable a
that does not appear in F and G � �nding a formula Hist of a particular form
that guarantees that ������ a �Hist is valid� and proving F � Hist 
 G � Our history
variable rmhist is de�ned so that� for each p in PrIds � the value of rmhist �p� is
initially equal to �A�� It is set to �B� when process p of the reliable memory
component returns to the RPC component or when process p of the RPC com�
ponent issues a failure return to the clerk� It is reset to �A� when process p of
the clerk returns to the caller� Formally� we de�ne�

h
�

� rmhist �p�

HNext�p�
�

� h � � if M �Return�p� � R�Fail�p�
then �B�
else if C �Reply�p� then �A�

else h

Hist
�

� � p � PrIds � �h � �A�� � ��HNext�p��hc�r�m�h i

It should be intuitively obvious that� for every p in PrIds � formula Hist implies
that the value of rmhist �p� at any time is determined by the values of c� r � and m
up to that time� A general theorem of TLA proves the validity of ������ rmhist �Hist �

The High�Level Proof We describe a structured proof of theorem Impl � in the
style of ����� We �rst present the high�level proof� It uses the state function result �
which we de�ne later �the high�level proof is independent of its de�nition�� and
the temporal formula�

IPImp�p�
�

� E �LegalCaller�p� � C �ISpec�p� � R�ISpec�p�
�M �RPSpec�p� � �� l � MemLocs �M �MSpec�l�� �Hist�p�

For any formula F � we let F be the formula obtained by substituting result
for result in F � Note that all formulas in the proof are interpreted in the con�
text of the MemoryImplementation module� The variable declarations in the
Assume �including the implicit declaration of p in the assumption p � PrIds�
are necessary� otherwise the formulas in the Prove part would contain unde�
clared variables� The following high�level proof is a simple exercise in predicate�
logic reasoning with the operators � and ������ � since these operators �applied to
temporal�logic formulas� obey the usual rules of �rst�order logic�

�� Assume� �� cstate� rstate�mem� result � rmhist � variable
�� p � PrIds

Prove� IPImp�p� 
 UPSpec�p�
Proof� Proved below�

�� Assume� �� cstate� rstate�mem� result � rmhist � variable
�� l � MemLocs

Prove� �� q � PrIds � IPImp�q�� 
 MSpec�l�



Proof� Proved below�
�� Assume� cstate� rstate�mem� result � rmhist � variable

Prove� E �LegalCaller � C �ISpec � R�ISpec �M �IRSpec � Hist 
 IUSpec
Proof� By steps � and �� since � distributes over �� barring �which is just
substitution� distributes over � and �� and we can deduce �� u � U �P�u��

�� u � U �Q�u�� by proving P�u�
 Q�u� for any u in U �

�� Assume� cstate� rstate�mem� result � rmhist � variable
Prove� E �LegalCaller � C �ISpec � R�ISpec �M �IRSpec � Hist 
 USpec
Proof� By step �� since we can deduce F 
 ������ x �G�x � by proving F 
 G�x ��
for some state function x �


� Q�E�D�
Proof� By step � and the validity of ������ rmhist � Hist � since we can deduce
������� x �F �x ��
 G by proving F �x �
 G � assuming x does not occur in G � and
we can deduce the equivalence of ������ x � y �F �x ��G�y� and ������� x �F �x ��� ������� y �
G�y��� assuming x does not occur in G�y� and y does not occur in F �x ��

The Lower�Level Proof At the heart of our argument lie the proofs of steps �
and �� They are based on the predicate�action diagram of Figure �� on the next
page� We introduce the abbreviations T and F for true and false� and uc for
unchanged� The operator S is de�ned to assert that

� For each of the three channels memCh� crCh� and rmCh� there is a call in
progress on that channel i� the corresponding one of the �rst three arguments
equals T�

� The values of cstate�p�� rstate�p�� and rmhist �p� equal the last three argu�
ments� where �AB� indicates a value of either �A� or �B��

� Certain relations hold among the other variables�for example� if the �rst
argument is T� then memCh�p��arg is an element of LegalArgs �

� mem�l � is an element of MemVals � for all l in MemLocs �

The formal de�nition of S appears in Figure �	 on page ��� It may help in
understanding this de�nition to observe that�

E �Calling�p� � C �Snd �Calling�p�
C �Rcv �Calling�p� � R�Snd �Calling�p�
R�Rcv �Calling�p� � M �E �Calling�p�

We have labeled the state predicates in the predicate�action diagram S�� � � � �
S�� We de�ne those labels to be synonymous with their respective predicates� so
S� equals S �T�F�F� �A�� �A�� �A��� We de�ne the state function result so that
result �p� has the value given in Figure �	� for each p in PrIds �

The Proof of Step � Intuitively� the proof of step � is as follows�

���� The implementation�s initial condition implies the initial condition S� of
the predicate�action diagram�



S� S�

S� S�

S
 S�

S�F�F�F� �A�� �A�� �A�� S �T�F�F� �A�� �A�� �A��

�
	



�

�
	



�

S �T�F�F� �B�� �A�� �B�� S�T�T�F� �B�� �A�� �AB��

�
	



�

�
	



�

S �T�T�F� �B�� �B�� �B�� S �T�T�T� �B�� �B�� �AB��

�
	



�

�
	



�

�

�

� C �Forward�p�
� uc he� r �m� hi

� R�Forward�p�
� uc he� c�m� hi

�

� C �Reply�p�
� uc he� r �mi

�

� � R�Reply�p�
� R�Fail�p�

� uc he� c�mi

�

� M �Return�p�
� uc he� c� ri�

� E �Next�p�
� uc hc� r �mi �

� C �Retry�p�
� uc he� r �m� hi

q
i

� R�Fail�p�
� uc he� c�mi

o

� M �Read�p� � � l � M �Write�p� l�
� uc he� c� r � hi

Fig� �	� A predicate�action diagram of he� c� r �m� hi for IPImp�p�� where p is
an element of PrIds �

���� The implementation�s next�state action implies that the diagram describes
all possible state transitions� There are six conditions� one for each state
predicate in the diagram�

���� The initial condition S� of the predicate�action diagram implies the initial
condition PInit�p� of UPSpec�p��

���� Each of the actions allowed by the predicate�action diagram implements
�implies� some disjunct of the next�state action UNext�p� of UPSpec�p�� or
else leaves pv unchanged�

��
� All the temporal reasoning� including the proof of the fairness properties�
is left for the �nal Q�E�D� step�

The formal proof is as follows�

���� �E �Calling�p� � C �Init�p� � R�Init�p� �M �PInit�p�
� �� l � MemLocs � M �MInit�l�� � �h � �A�� 
 S�

���� Assume� �� � �E �Next�p��e
� �C �Next�p��c � �R�Next�p��r � �M �RNext�p��m
� � l � MemLocs � �� q � PrIds �M �Write�q � l��mem
l�

� �HNext�p��hc�r�m�hi

�� �unchanged he� c� r �m� h i
Prove� �� S�
 S�� � E �Next�p� � uc hc� r �m i

�� S�
 S�� � C �Forward�p� � uc he� r �m� h i



S �ECalling �CCalling �RCalling � cs � rs � rh�
�

�
� � ECalling � E �Calling�p�
� ECalling 
 �memCh�p��arg � LegalArgs�

� � CCalling � R�Snd �Calling�p�
� CCalling 
 �crCh�p��arg � C �RelayArg�p��
� �CCalling � �cstate�p� � �B�� 


crCh�p��res � MemVals 	 f�OK�� �BadArg�� �RPCFailure�g
� � RCalling �M �E �Calling�p�
� RCalling 
 �rmCh�p��arg � R�RelayArg�p��
� �RCalling 
 �result �p� � NotAResult�
� �RCalling � �rstate�p� � �B�� 


rmCh�p��res � MemVals 	 f�OK�� �BadArg�g
� cs � cstate�p�
� rs � rstate�p�
� rmhist �p� � if rh � �AB� then f�A�� �B�g

else frhg
� result �p� � MemVals 	 fNotAResult � �OK�� �BadArg�g
� � l � MemLocs � mem�l � � MemVals

result �p� �
case S� � S� � result �p� �

S� � if h � �A� then result �p�
else �MemFailure� �

S� � if �h � �B�� � �result �p� � NotAResult�
then �MemFailure�
else result �p� �

S
 � rmCh�p��res �
S� � if crCh�p��res � �RPCFailure� then �MemFailure�

else crCh�p��res

Fig� �
� The formal de�nitions of S and result �p�� for p in PrIds �

�� S�
 � S�� � R�Forward�p� � uc he� c�m� h i
� S�� � R�Fail�p� � uc he� c�m i

�� S�
 � S�� � �M �Read�p� � � l � M �Write�p� l��
� uc he� c� r � h i

� S
� �M �Return�p� � uc he� c� r i

� S

 S�� � �R�Reply�p� � R�Fail�p�� � uc he� c�m i
�� S�
 � S�� � C �Reply�p� � uc he� r �m i

� S�� � C �Retry�p� � uc he� r �m� h i
���� S�
 PInit�p�
���� �� S� � S�� � E �Next�p� � uc hc� r �m i 
 uc pv

�� S� � S�� � C �Forward�p� � uc he� r �m� h i 
 uc pv
�� a� S� � S�� � R�Forward�p� � uc he� c�m� h i 
 uc pv



b� S� � S�� � R�Fail�p� � uc he� c�m i 
 Fail�p�
�� a� S� � S�� �M �Read�p� � uc he� c� r � h i 
 Read�p�

b�Assume� l � constant
Prove� S� � S�� �M �Write�p� l� � uc he� c� r � h i 
Write�p� l�

c� S� � S
� �M �Return�p� � uc he� c� r i 
 uc pv

� a� S
 � S�� � R�Reply�p� � uc he� c�m i 
 uc pv

b� S
 � S�� � R�Fail�p� � uc he� c�m i 
 Fail�p�
�� a� S� � S�� � C �Reply�p� � uc he� r �m i 
 Return�p�

b� S� � S�� � C �Retry�p� � uc he� r �m� h i 
 Fail�p�
	� uc he� c� r �m� h i 
 uc pv

��
� Q�E�D�

The proofs of ��� ��� are straightforward� tedious exercises� The part of the
proof that shows that the Clerk and RPC components relay their arguments
properly requires a bit of simple reasoning about sequences�for example� to
prove

�memCh�p��arg � LegalArgs�
 �C �RelayArg�p� � C �LegalRcvArgs�

The rest of the proof involves a fairly mindless expanding of de�nitions and
application of �rst�order logic�

The Proof of Step ��� We now give the high�level proof of step ��
� which is the
only part of the proof of step � that involves temporal logic�

Let� Inv�p�
�

� S� � S� � S� � S� � S
 � S�
��
��� IPImp�p� 
 �Inv�p�

Proof� By ���� ���� and the laws of TLA� which allow us in general to
deduce P � �� u � U � ��N �u��v�u�� 
 �I from P 
 I together with
I � �� u � U � �N �u��v�u�� 
 I �� �Take U to be fu�� u�� u�g 	MemLocs �
let N �u�� be E �Next�p�� etc��

��
��� IPImp�p� � �Inv�p�
 PInit�p� � ��UNext�p��pv
Proof� ��� ��� show that IPImp�p� implies PInit�p� and that
Inv�p� � �E �Next�p��e � �C �Next�p��c � �R�Next�p��r � �M �RNext�p��m
� �� l � MemLocs � �� q � PrIds �M �Write�q � l��mem
l��
� �HNext�p��hc�r�m�hi

implies �UNext�p��pv � The result is now obtained from the laws of TLA�
which allow us in general to infer �I � ��u � U ���N �u��v�u��
 ��M �w
from I � I � � ��u � U � �N �u��v�u��
 �M �w �

��
��� IPImp�p� � �Inv�p�
WFpv �RNext�p�� �WFpv �Return�p��
Proof� Described below�

��
��� Q�E�D�
Proof� Step ��
 �which asserts step �� follows from ��
�� ��
�� by propo�
sitional logic�

The Proof of Step ����	 To complete the proof of step �� we must prove ��
���
which shows that the speci�cation�s fairness properties are satis�ed� We give an



intuitive sketch of the proof� To prove WFpv �RNext�p��� we must show that if

RNext�p� is continuously enabled� then a RNext�p� step must eventually occur�
To prove WFpv �Return�p��� we must show that if Return�p� is continuously en�

abled� then a Return�p� step must eventually occur� The two actions are disabled
in state S�� Therefore� to prove the two fairness properties� it su�ces to show
that� if any of S� S� ever holds� then S� must eventually hold� It is clear from
the diagram that this follows from the two conditions� �i� none of the predicates
S� S
 can hold forever and �ii� if S� holds repeatedly� then S� must eventually
hold� The following implementation fairness properties imply condition �i��

� WFc�C �Forward�p�� implies that S� cannot hold forever�

� WFr �R�Next�p�� implies that S� cannot hold forever�

� WFm�M �RNext�p�� implies that if S�� �result �p��NotAResult� holds� then
S� � �result �p� �� NotAResult� eventually holds� and WFm�M �Return�p��
then implies that S
 eventually holds�

� WFr �R�Next�p�� implies that S
 cannot hold forever�

Condition �ii� follows from SFc�C �Reply�p��� which implies that if S� holds
repeatedly� then S� eventually holds� The proof rules of TLA have been designed
expressly to formalize this style of informal reasoning� We omit the formal proof�

The Proof of Step 
 Finally� we must prove step �� We now confess that� to
simplify the exposition� we have structured the proof incorrectly� The proof of
� requires steps ��� ��� and step ��
��� for an arbitrary p in PrIds � Those steps
should therefore be brought out either as a separate lemma� or as level�� steps�
Here� we violate the rules of structured proofs and use those steps directly in
the proof of ��

���� �� q � PrIds � IPImp�q� ��Inv�q�� 
 MInit�l�
Proof� By the assumption that l � MemLocs � since M �MInit�l� trivially
implies MInit�l� �the two formulas are the same��

���� � �E �Next�p��e
� �C �Next�p��c � �R�Next�p��r � �M �RNext�p��m
� � l� � MemLocs � �� q� � PrIds �M �Write�q�� l���mem
l��

� �HNext�p��hc�r �m�h i

� Inv�p� � Inv�p��

� �M �Write�q � l��mem
l�


 �Write�q � l��
mem
l�

Proof� Inv�p��M �Write�p� l� implies S�� for any p� We consider two cases�
�i� If �unchanged he� c� r �m� h i holds� then the result follows from part �
of ��� and part �b of ���� �ii� If unchanged he� c� r �m� h i holds� then S�
and Inv�p�� imply S��� and the result follows from part �b of ����

���� Q�E�D�
Proof� ���� ���� and the laws of TLA show that

�� q � PrIds � IPImp�q� � �Inv�q��
 MSpec�l�
The result then follows from ��
���



� Implementing the RPC Component

The problem statement introduces a lossy RPC component� which resembles
the RPC component but does not raise �RPCFailure� exceptions and may fail to
return� Much as with the memory implementation of Section �� we specify the
lossy RPC and an RPC clerk� and prove that their composition implements the
RPC speci�cation�

The problem statement�s informal description of the lossy RPC component
is problematic for reasons we now explain� The RPC component of Problem ��
speci�ed in module RPC � is just as lossy as the �lossy� one�neither will return
to the sender if the receiver fails to return� The additional timing constraints
on the lossy RPC component� together with the description of the RPC imple�
mentation� suggest that a sender process should be able to issue a new call if a
previous one has not returned� However� issuing a second call without waiting
for a return violates the handshake protocol of the procedure�calling interface�

A physical component cannot act correctly without some form of synchro�
nization with its environment� If we eliminate the handshake protocol�s require�
ment that the environment must wait for a return before issuing the next call�
we must introduce some other form of synchronization� The problem suggests a
new protocol in which a sender process can issue a call when either �a� there is
no outstanding call� or �b� some time � has elapsed since the previous call� For
such an interface to be useful� the sender needs to know for which call a result
is being returned� This requires either tagging the calls and returns or� more
conventionally� specifying that the lossy RPC component never reply to a call
more than time � after it was issued�

Although replacing the handshake protocol with a timed protocol would pro�
duce a more sophisticated example� it is a departure from the problem statement�
A literal reading of that statement requires the lossy RPC component to obey
the procedure�calling protocol� which forbids more than one outstanding call
per process� We therefore adopt this requirement in the speci�cation of the lossy
RPC component in Section ��� below� This requirement a�ects our solution to
Problem 
� the implementation of an RPC component by composing an RPC
clerk with a lossy RPC component� If the lossy RPC component never returns
a call by process p and the clerk has returned an RPC failure for that call� then
the clerk must always return RPC failures to later calls by p�

��� A Lossy RPC

The only novelty in the speci�cation of the lossy RPC component is its use
of real�time constraints� We express these constraints as in ���� by introducing
a variable parameter now � whose value represents the current time� and de�n�
ing �ve temporal operators RT � VTimer � MaxTimer � MinTimer � and NonZeno
�called NZ in ����� We brie!y review these operators�

� The temporal formula RT �v� asserts that �a� now is a monotonically non�
decreasing real number and �b� steps that change now leave v unchanged�



Typically� v is a tuple of relevant variables other than now � so �b� essentially
means that changes to these variables are considered to be instantaneous�

� If A is an action and v a state function such that any A step changes v � and
if t is a variable that does not occur in A or v � then the temporal formula
VTimer�t �A� �� v� �MaxTimer�t� asserts that A cannot be enabled for more
than � time units before the next A step occurs�

� If A is an action and v a state function such that any A step changes v � and
if t is a variable that does not occur in A or v � then the temporal formula
VTimer�t �A� �� v� �MinTimer�t �A� v� asserts that A must be continuously
enabled for at least � time units before the next A step occurs�

� The temporal formula NonZeno asserts that now keeps increasing without
bound� so time marches on�

We de�ne these operators in module RealTime of Figure �
 on this page� This

module RealTime

import Reals

parameters now � variable
� � constant

assumption In�nityUnReal
�

� � �� Real

RT �v�
�

� � now � Real
� ���now � � fr � Real � now � rg� � �v � � v��now

VTimer�x �A� �� v�
�

�
� x � if Enabled hAiv then now � �

else �
� ��x � � if �Enabled hAiv ��

then if hAiv � �Enabled hAiv then now � � �
else x

else � �hx �v i

MaxTimer�x �
�

� ���x ����
 �now � � x ��now

MinTimer�x �A� v�
�

� ��A
 �now � x ��v

NonZeno
�

� � t � Real � ��now � t�

Fig� ��� Module RealTime�

module has appeared before ���� ���� except that earlier versions did not include
NonZeno� It imports module Reals � which de�nes the set Real of real numbers
and some of the usual operators on them such as ��



The speci�cation of the lossy RPC component is given in module LossyRPC
of Figure �� on this page� The structure of this speci�cation is familiar��� This

module LossyRPC

import RPC� RealTime� Reals

parameters � � constant

assumption

DeltaAssump
�

� �� � Real� � �� � ��

module LInner

parameters

rstate � variable

LNext�p�
�

� Inner �Forward�p� � Inner �Reject�p� � Inner �Reply�p�

MaxProcess�s � p�
�

�
� VTimer�s � Inner �Forward�p� � Inner �Reject�p�� ��

hInner �vars�p��Snd �caller�p�i�
� MaxTimer�s�

MaxReturn�s � p�
�

�
� VTimer�s � Inner �Reply�p�� �� hInner �vars�p��Rcv �rtrner�p�i�
� MaxTimer�s�

LISpec
�

�
� p � PrIds � � Inner �Init�p� � ��LNext�p��Inner�vars�p�

� RT �Inner �vars�p��
� ������ s � MaxProcess�s � p�
� ������ s � MaxReturn�s � p�

Spec
�

� ������ rstate � LInner �LISpec

Fig� ��� Module LossyRPC �

speci�cation is based on that of the RPC component� The initial condition and
next�state action are the same as for the ordinary RPC component� except for the
use of timing constraints and the absence of Fail�p� steps� The timing constraint
MaxProcess�s � p� asserts that a Forward�p� or aReject�p� step must occur within

�� We have not bothered to introduce a separate module containing the parameter
declarations� Names pre�xed by �Inner �� are de�ned in submodule Inner of the
imported RPC module� Module LossyRPC 	s submodule is called LInner to avoid
name con�icts with the imported submodule�



� seconds�� of when it becomes enabled� the timing constraint MaxReturn�s � p�
asserts that a Return�p� step must occur within � seconds of when it becomes
enabled�

��� The RPC Implementation

The RPC Clerk The RPC clerk passes requests to the lossy RPC component�
According to the problem statement�

The RPC component is implemented with a Lossy RPC component by
passing the RemoteCall call through to the Lossy RPC� passing the
return back to the caller� and raising an exception if the corresponding
return has not been issued after �� � � seconds�

Read literally� this requirement implies that� if the lossy RPC component returns
more than ���� seconds after it is called� then the clerk must raise an exception�
For example� if the RPC component returns a result �� � � seconds after it is
called and the clerk has not yet raised an exception� then the clerk cannot return
the result� it must raise an exception� We �nd it convenient to adopt the more
sensible requirement that the clerk returns an exception only if it has not yet
received a result� Thus� if the RPC component returns a result �� � � seconds
after it is called� and the clerk has not yet raised an exception� then the clerk
will return the result�

There is another aspect of the problem statement that is bizarre� In light
of the timing assumptions on the environment� one would expect the clerk to
have to return either a result or an exception within some �xed length of time�
However� the problem statement makes no such requirement� implying only that
the clerk must eventually return� We follow the problem statement in this re�
spect� the resulting mix of eventuality and real�time requirements yields a more
interesting example�

Our RPC clerk is speci�ed in module RPCClerk of Figure �� on the next
page� The speci�cation is similar to that of the memory clerk� The major di�er�
ences are that there are no Retry�p� steps� and that there is a Fail�p� timeout
action� which cannot be executed until it has been enabled for at least 	 sec�
onds� Correctness of the RPC component�s implementation is proved under the
assumption that 	 is greater than �� � ��

The Implementation Proof The correctness of the RPC implementation
is asserted in Module RPCImplementation in Figure �� on page �
� The four
components of the implementation are pictured below� where the sender and
receiver form the environment�

�� Strictly speaking� it asserts that the step must occur before now increases by more
than �� we interpret such an increase to represent the passing of � seconds
rather
than the passing of � years or � kilometers�



module RPCClerk

import Sequences� Reals

parameters sndCh� rcvCh � variable
PrIds �Vals � 	 � constant

assumption

TauAssump
�

� �	 � Real� � �	 � ��

LegalArgs
�

� f�RemoteCall�g � string� Seq�Vals�

include ProcedureInterface as Snd with ch � sndCh�Args � LegalArgs
include ProcedureInterface as Rcv with ch � rcvCh�Args � LegalArgs

module Inner

parameters

cstate � variable

Init�p�
�

� �cstate�p� � �A�� � �Rcv �Calling�p�
Forward�p�

�

� � Snd �Calling�p� � �cstate�p� � �A��
� Rcv �Call�p� sndCh�p��arg�
� cstate ��p� � �B�
� unchanged Snd �rtrner�p�

Fail�p�
�

� � Rcv �Calling�p� � �cstate�p� � �B��
� Snd �Return�p� �RPCFailure��
� cstate ��p� � �A�
� unchanged Rcv �caller�p�

Reply�p�
�

� � �Rcv �Calling�p� � �cstate�p� � �B��
� Snd �Return�p� rcvCh�p��res�
� cstate ��p� � �A�
� unchanged Rcv �caller�p�

Next�p�
�

� Forward�p� � Fail�p� �Reply�p�

vars�p�
�

� hcstate�p��Snd �rtrner�p��Rcv �caller�p�i

MinFail�s � p�
�

� � VTimer�s �Fail�p�� 	� vars�p��
� MinTimer�s �Fail�p�� vars�p��

ISpec
�

� � p � PrIds � � Init�p� � ��Next�p��vars�p�
� RT �vars�p�� � ������ s � MinFail�s � p�
� WF vars�p��Next�p��

Spec
�

� ������ cstate � Inner �ISpec

Fig� ��� The component speci�cation of the RPC clerk�



Snd �LegalCaller

Sender

C �Spec

RPC Clerk

L�Spec

Lossy

RPC Component

Rcv �LegalReturner

Receiver

��sndCh �� clCh ��rcvCh

Formula RcvTiming asserts the requirement that the receiver always return
within � seconds of when it is called� Theorem Impl asserts that the compo�
sition of the components� speci�cations� together with condition RcvTiming and
the assumption NonZeno that time keeps advancing� implies the speci�cation of
the RPC component�

The proof of theorem Impl has a structure similar to that of the proof of
the memory implementation in Section ���� As in that proof� we eliminate the
pre�xes �Inner �� and �LInner �� from symbol names� De�nitions from module
RPCImplementation along with some additional de�nitions appear in Figure ��
on the next page� We have overloaded symbols such as C �ISpec� using the con�
vention that X �a�� � � � � an � is de�ned to be X with quanti�cation over a�� � � � �
an removed� The �timing� de�nitions give names to actions and predicates that
occur in the RealTime module�

To de�ne the re�nement mapping rstate� we must again introduce a history
variable lrhist � where lrhist �p� equals �A� i� the lossy RPC component has per�
formed a Reject�p� action� but the RPC clerk component has not yet returned

module RPCImplementation

import RPC� RPCParameters� Reals� RealTime

parameters

	� �� � � constant
clCh � variable

assumption

TDEAssump
�

� � f	� �� �g 
 fr � Real � r � �g
� 	 � � � � � �

RcvTiming
�

� � p � PrIds �
������ s � � RT �Rcv �rtrner�p��

� VTimer�s � � v �Rcv �Return�p� v�� �� rcvCh�p��
� MaxTimer�s�

include LossyRPC as L with sndCh � clCh� rcvCh � rcvCh

include RPCClerk as C with sndCh � sndCh� rcvCh � clCh

theorem

Impl
�

� Snd �LegalCaller � Rcv �LegalReturner � RcvTiming
� C �Spec � L�Spec �NonZeno 
 Spec

Fig� ��� Module RPCImplementation�



The Speci�cation

RPC Component �imported from RPC �

v
�

� vars�p�

Init�p�
�
� �rstate�p� � �A�� � �Rcv �Calling�p�

Next�p�
�
� Forward�p� � Reject�p� � Fail�p� � Reply�p�

ISpec�p�
�

� Init�p� � ��Next�p��v �WFv �Next�p��

Spec
�
� ������ rstate � � p � PrIds � ISpec�p�

The Implementation

The Sender �imported from RPC �

s
�
� Snd �caller�p�

Snd �Next�p�
�
� � a � LegalSndArgs � Snd �Call�p� a�

Snd �LegalCaller
�

� � p � PrIds � �Snd �Calling�p� � ��Snd �Next�p��s

The Receiver �imported from RPC �

r
�
� Rcv �rtrner�p�

Rcv �Next�p�
�
� � v � Rcv �Return�p� v�

Rcv �LegalReturner
�
� � p � PrIds � ��Rcv �Next�p��r

RcvT �p� et�
�
� � RT �r� � VTimer�et �Rcv �Next�p�� �� rcvCh�p��

� MaxTimer�et�

RPC Clerk �included from RPCClerk�

c
�
� C �vars�p�

C �ISpec�p� ct�
�
� � C �Init�p� � ��C �Next�p��c � WF c�C �Next�p��

� RT �c� � C �MinFail�ct � p�

C �Spec
�
� ������ cstate � � p � PrIds � C �ISpec�p�

Lossy RPC �included from LossyRPC �

l
�
� L�vars�p�

L�LISpec�p� pt � rt�
�
� � L�Init�p� � ��L�LNext�p��l

� RT �l� � L�MaxProcess�pt � p� � L�MaxReturn�rt � p�

L�Spec
�
� ������ rstate � � p � PrIds � L�LISpec�p�

Timing

TNext�x�
�
� �now � � fr � Real � now � rg� � �x � � x�

VInit�t �A� �� x�
�
� t � if Enabled hAix then now � � else 	

VNext�t �A� �� x�
�
� t � � if �Enabled hAix �

�

then if hAix � �Enabled hAix then now � � �

else t

else 	

MaxNext�t�
�
� �t ��	�� �now � 
 t�

MinNext�t �A�
�
� A� �now � t�

Fig� ��� De�nitions from module RPCImplementation� plus a few more�



the result to the sender� The formal de�nition is as follows�

h
�

� lrhist �p�

HNext�p�
�

� h � � if L�Reject�p� then �A�
else if C �Reply�p� then �B�

else h

Hist
�

� � p � PrIds � �h � �B�� � ��HNext�p��hc�l�h i

The validity of ������ lrhist �Hist is again asserted by a general TLA theorem�

The High�Level Proof The high�level proof uses the state function rstate and the
temporal formula

IImp�p� et � ct � pt � rt�
�

�
Snd �LegalCaller�p� � Rcv �LegalReturner�p� � RcvT �p� et�
� C �ISpec�p� ct� � L�LISpec�p� pt � rt� � Hist�p� � NonZeno

We de�ne rstate later� the only property we use in the high�level proof is that
the timers et � ct � pt � and rt do not occur in its de�nition�

�� Assume� �� cstate� rstate� et � ct � pt � rt � lrhist � variable
�� p � PrIds

Prove� IImp�p� et � ct � pt � rt�
 ISpec�p�
Proof� Proved below�

�� Assume� �� cstate� rstate� lrhist � variable
�� p � PrIds

Prove� ������� et � ct � pt � rt � Snd �LegalCaller�p� � Rcv �LegalReturner�p�
� RcvT �p� et� � C �ISpec�p� ct� � L�LISpec�p� pt � rt�
� Hist�p�� 
 ISpec�p�

Proof� By step � and TLA quanti�er rules� because et � ct � pt � and rt do
not occur in the de�nition of IPSpec�p� or rstate� so they do not occur in
ISpec�p��

�� Assume� cstate� rstate� lrhist � variable
Prove� Snd �LegalCaller � Rcv �LegalReturner � RcvTiming

� C �ISpec � L�LISpec � Hist 
 Spec
Proof� By step � and TLA quanti�er rules�

�� Q�E�D�
Proof� By step �� the validity of ������ lrhist �Hist � and TLA quanti�er rules�

The Proof of Step � The proof of step � is based on the predicate�action diagram
of Figure �� on the next page� In this diagram and in the rest of the proof� we
assume that � is de�ned so that r � s is false unless both r and s are elements
of the set Real of real numbers� We use notation similar to that in the proof
of the memory implementation� The formal de�nition of S appears in Figure ��
on the next page� Again� we de�ne the labels S�� � � � � S� that appear in the
predicate�action diagram of Figure �� to be synonymous with their respective



S� S�

S�F�F�F� �A�� �A�� �B��

�



�
�

S�
S�

S
 S�

S�T�F�F� �A�� �A�� �B��

�



�
�

S�T�F�F� �B�� �A�� �AB��

�



�
�

� S�T�T�F� �B�� �A�� �B��
� ct � pt � � � �

� pt � now

�
�

�
�

� S�T�T�F� �B�� �B�� �B��
� ct � rt � � � �� � � � ��
� rt � now

�
�

�
�

� S�T�T�T� �B�� �B�� �B��
� ct � et � � � �� � ��
� et � now

�
�

�
�

�

�

C �Forward�p�

L�Forward�p�

�

C �Reply�p�

�

L�Reply�p�

�

� v �
Rcv �Return�p� v��

� v � LegalSndArgs �
Snd �Call�p� v� �

L�Reject�p��

Fig� ��� A predicate�action diagram of hs � r � c� l � hi for IImp�p� et � ct � pt � rt��

S �ECalling �CCalling �LCalling � cs � rs � lh�
�

�
� � Snd �Calling�p� � ECalling
� ECalling 
 �sndCh�p��arg � LegalSndArgs�

� � C �Rcv �Calling�p� � CCalling
� CCalling 
 �clCh�p��arg � sndCh�p��arg�

� L�Rcv �Calling�p� � LCalling
� cstate�p� � cs
� rstate�p� � rs
� � lrhist �p� � if lh � �AB� then f�A�� �B�g

else flhg
� �lrhist �p� � �A��
 � L�RelayArg�p� �� L�LegalRcvArgs

� clCh�p��res � �BadCall�
� �lrhist �p� � �B�� � �cs � �B�� � �CCalling


 �clCh�p��res � rcvCh�p��res�
� now � Real

Fig� ��� The formal de�nition of S � for p in PrIds �



predicates� We de�ne the state function rstate so that�

rstate�p� � case S� � S� � S� � �A��
S� � S
 � �B��
S� � lrhist �p�

Because we require that the timer variables not occur in rstate� we must replace
S�� S�� and S
 by just their S conjuncts in the actual de�nition of rstate�p��

The proof of the safety part of the RPC component�s speci�cation involves
proving that Figure �� is a correct predicate�action diagram for the formula
IImp�p� et � ct � pt � rt�� The key step in this proof is showing that the clerk can
never take a C �Fail�p� step� The proof is essentially as follows� Because C �Fail�p�
is enabled only when C �Rcv �Calling�p� is true and cstate�p� equals �B�� such
a step is possible only in states satisfying S�� S�� or S
� The equality and
inequalities in these state predicates� together with the assumptions on 	 � �� and
�� imply that ct is greater than now when S�� S�� or S
 holds� However� the
conjunct C �MinFail�ct � p� in the clerk�s speci�cation asserts that a C �Fail�p�
step can occur only when ct is less than or equal to now � so such a step is
impossible� This invariance reasoning about timer values is a direct formalization
of the intuitive argument that the lossy RPC component must return from a call
before the clerk can take a Fail�p� step� It is typical of assertional proofs of real�
time properties�

The formal proof of step � is analogous to the proof of step � of the mem�
ory implementation� Steps ��� and ��� assert that the predicate�action diagram
describes the initial state and transitions of formula IImp�p� et � ct � pt � rt�� steps
��� and ��� assert that the system described by the predicate�action implements
the initial condition and next�state relation of ISpec�p�� and step ��
 completes
the proof�

���� �Snd �Calling�p� � C �Init�p� � L�Init�p� � �h � �B�� � �now � Real�

 S�

���� Assume� � �Snd �Next�p��s � �Rcv �Next�p��r
� �C �Next�p��c � �L�LNext�p��l � �HNext�p��hc�l�h i

� �TNext�r��now � �TNext�c��now � �TNext�l��now
� �VNext�et �Rcv �Next�p�� �� rcvCh�p���het�rcvCh
p�i
� �MaxNext�et��now
� �VNext�ct �C �Fail�p�� 	� c��hct�c i

� �MinNext�ct �C �Fail�p���c
� �VNext�pt �L�Forward�p� � L�Reject�p�� ��

h l �C �Rcv �caller�p�i��hpt�h l�C �Rcv�caller�p�ii

� �MaxNext�pt��now
� �VNext�rt �L�Reply�p�� ��

h l �Rcv �rtrner�p�i��hrt�h l�Rcv�rtrner�p�ii

� �MaxNext�rt��now
Prove� �� S�
 � S�� � uc hs � r � c� l � h i

� S�� � Snd �Next�p� � uc hr � c� l i



�� S�
 � S�� � uc hs � r � c� l � h i
� S�� � C �Forward�p� � uc hs � r � l i

�� S�
 � S�� � uc hs � r � c� l � h i
� S�� � L�Forward�p� � uc hs � r � c i
� S�� � L�Reject�p� � �h � � �A�� � uc hs � r � c i

�� S�
 � S�� � uc hs � r � c� l � h i
� S
� � Rcv �Next�p� � uc hs � c� l i


� S

 � S
� � uc hs � r � c� l � h i
� S�� � L�Reply�p� � uc hs � r � c� h i

�� S�
 � S�� � uc hs � r � c� l � h i
� S�� � C �Reply�p� � uc hs � r � l i

���� S�
 Init�p�
���� �� S� � S�� � Snd �Next�p� � uc hr � c� l i 
 uc v

�� S� � S�� � C �Forward�p� � uc hs � r � l i 
 uc v
�� S� � S�� � L�Forward�p� � uc hs � r � c i 
 Forward�p�
�� S� � S�� � L�Reject�p� � �h � � �A�� � uc hs � r � c i 
 uc v

� S� � S
� �Rcv �Next�p� � uc hs � c� l i 
 uc v
�� S
 � S�� � L�Reply�p� � uc hs � r � c� h i 
 uc v
	� S� � S�� � C �Reply�p� � uc hs � r � l i 
 Reply�p� �Reject�p�

� uc hs � r � c� l � h i 
 uc v

��
� Q�E�D�

The proofs of steps ��� ��� use simple properties of real numbers and predi�
cate logic� They are omitted�

The Proof of Step ��� The high�level proof of step ��
 is analogous to the proof
of step ��
 of the memory implementation in Section ����

Let� Inv�p�
�

� S� � S� � S� � S� � S
 � S�
��
��� IImp�p� et � ct � pt � rt�
 �Inv�p�

Proof� This follows from ��� and ���� using exactly the same reasoning
as in the corresponding step of the memory implementation proof�

��
��� IImp�p� et � ct � pt � rt� � �Inv�p�
 Init�p� � ��Next�p��v
Proof� From ���� ���� and ���� using the TLA proof rules explained in
the memory implementation proof�

��
��� IImp�p� et � ct � pt � rt� � �Inv�p�
WFv �Next�p��
Proof� Described below�

��
��� Q�E�D�
Proof� Step � follows from ��
�� ��
�� by propositional logic�

The Proof of Step ����	 It remains to prove step ��
��� which asserts that the
fairness property of the RPC speci�cation is satis�ed� We sketch the argument
intuitively� To prove WFv �Next�p��� it is enough to show that Next�p� cannot
be continuously enabled� The action is disabled in state S�� Therefore� it su�ces
to show that� if any of S� S� ever holds� then S� must eventually hold� It is
clear from the predicate�action diagram of Figure �� that this follows if we can



prove that none of the predicates S� S� can hold forever� which is established
as follows�

� The implementation fairness property WFc�C �Next�p�� implies that neither
S� nor S� can hold forever�

� To show that S� cannot hold forever� observe that pt remains unchanged
while S� holds� Since S� asserts that pt is greater than or equal to now �
and NonZeno implies that now increases without bound� S� must eventu�
ally become false� Similar reasoning shows that neither S� nor S
 can hold
forever�

Observe how NonZeno allows us to deduce eventual progress from invariance
properties� The RT � VTimer � MinTimer � and MaxTimer formulas used to spec�
ify real�time system requirements are all safety properties� We infer liveness
properties from them by using the NonZeno assumption�

References

�� Mart��n Abadi and Leslie Lamport� The existence of re�nement mappings� Theo�
retical Computer Science� �������
������ May �����

�� Mart��n Abadi and Leslie Lamport� An old�fashioned recipe for real time� ACM

Transactions on Programming Languages and Systems� ���
���
����
��� Septem�
ber �����

�� Mart��n Abadi and Leslie Lamport� Conjoining speci�cations� ACM Transactions

on Programming Languages and Systems� ������
���
��� May ���
�
�� Mart��n Abadi� Leslie Lamport� and Stephan Merz� The Dagstuhl example
a

TLA solution� World Wide Web page at http���www�research�digital�com�SRC
�dagstuhl�dagstuhl�html� It can also be found by searching the Web for the
���letter string formed by concatenating uid and lamportdagstuhlspecprob�


� Manfred Broy and Leslie Lamport� The RPC�memory speci�cation problem� In
this volume� Also available on ����

�� Nissim Francez� Fairness� Texts and Monographs in Computer Science� Springer�
Verlag� New York� Berlin� Heidelberg� Tokyo� �����

�� Rob Gerth� Ruurd Kuiper� and John Segers� Interface re�nement in reactive sys�
tems� In W� R� Cleaveland� editor� �rd International Conference on Concurrency

Theory� volume ��� of Lecture Notes in Computer Science� pages ������ Berlin�
Heidelberg� ����� Springer�Verlag�

�� Cli� B� Jones� Speci�cation and design of �parallel� programs� In R� E� A� Mason�
editor� Information Processing ��� Proceedings of the IFIP �th World Congress�
pages �������� Amsterdam� September ����� IFIP� North�Holland�

�� Leslie Lamport� TLA
temporal logic of actions� At URL http���www�research�

digital�com�SRC�tla� on the World Wide Web� It can also be found by
searching the Web for the ���letter string formed by concatenating uid and
lamporttlahomepage�

��� Leslie Lamport� How to write a proof� American Mathematical Monthly�
��������������� August�September �����



��� Leslie Lamport� Hybrid systems in TLA�� In Robert L� Grossman� Anil Nerode�
Anders P� Ravn� and Hans Rischel� editors� Hybrid Systems� volume ��� of Lec�
ture Notes in Computer Science� pages ������� Berlin� Heidelberg� ����� Springer�
Verlag�

��� Leslie Lamport� The temporal logic of actions� ACM Transactions on Program�

ming Languages and Systems� �������������� May �����
��� Leslie Lamport� TLA in pictures� IEEE Transactions on Software Engineering�

������������
� September ���
�
��� Leslie Lamport and Stephan Merz� Specifying and verifying fault�tolerant systems�

In H� Langmaack� W��P� de Roever� and J� Vytopil� editors� Formal Techniques in

Real�Time and Fault�Tolerant Systems� volume ��� of Lecture Notes in Computer

Science� pages ������ Springer�Verlag� September �����
�
� A� C� Leisenring� Mathematical Logic and Hilbert�s ��Symbol� Gordon and Breach�

New York� �����
��� Carver Mead and Lynn Conway� Introduction to VLSI Systems� chapter ��

Addison�Wesley� Reading� Massachusetts� �����
��� Amir Pnueli� The temporal semantics of concurrent programs� In Gilles Kahn� ed�

itor� Semantics of Concurrent Computation� volume �� of Lecture Notes in Com�

puter Science� pages ����� Springer�Verlag� July �����



Index

�horizontal bar�� �
hv�� � � � � vn i �tuple or sequence�� �	
� �prime�� 

�N �v � �
�� �
������ � �

 �implication�� precedence of� 

��� � �

� and �� lists of� 


action� 

next�state� �

arg component of channel� �
Args � �
array� �	
assumption� of a module� 

assumption�guarantee� �


behavior� �

caller� �
caller�p�� 

Calling�p�� 

ch� �
channel� �
choose� ��
component speci�cation� �

composition is conjunction� 	
constant parameter� �

export� �

F �false�� �

fairness� ��
function� �	

handshake protocol� 

hiding� ��
history variable� �	

implementation is implication� ��
import� �
include� �

LegalCaller � �
LegalReturner � �
liveness� ��
LossyRPC module� ��

MaxProcess � ��
MaxReturn� ��
MaxTimer � ��
MemClerk module� ��
MemClerkParameters module� ��
Memory module� ��� ��
MemoryImplementation module� �

MemoryParameters module� 

MinTimer � ��

Naturals module� �	
next�state action� �
NonZeno� ��
NotAResult � ��
now � ��

parameter� of a module� �
predicate�action diagram� ��
PrIds � �
prime� 

ProcedureInterface module� �

Real � ��
Reals module� ��
RealTime module� �

re�nement mapping� �	
res component of channel� 

returner� �
RPC module� ��
RPCClerk module� �	
RPCImplementation module� �

RPCParameters module� �

rtrner�p�� 


safety� ��
sequence� �	
Sequences module� �

SF �strong fairness�� �	



state� �
state predicate� 

step� 

string� ��
St�len� Ketil� �
submodule� ��

T �true�� �

temporal formula� �
theorem� �

TLA�� �
tuple� �	
types� absence of� �

uc �unchanged�� �

unchanged� ��

variable parameter� �
VTimer � ��

WF �weak fairness�� ��


