
Systems Development with Java: Experiences from a
Practical Project Course in Software Engineering�

Klaus Bergner
Technische Universit¨at München,

Institut für Informatik,
D-80290 München, Germany

bergner@informatik.tu-muenchen.de

Franz Huber
Technische Universit¨at München,

Institut für Informatik,
D-80290 München, Germany

huberf@informatik.tu-muenchen.de

Abstract

This paper describes our experiences in using the Java
programming language in a student software engineering
project. We focus on the suitability of Java for developing
large-scale software systems in teams, and on the tools and
techniques used for design and implementation. Further-
more, we comment on the significance of our experiences
for future educational software engineering projects as well
as for industrial projects.

1. Introduction

Developing large software systems in teams is a skill best
learnt by practical experience. In order to make this experi-
ence available to our students at the informatics department
of Technische Universit¨at München, we have been giving
practical project courses in software engineering for three
years. Each of these courses comprised a complete soft-
ware development project and was intended to deliver a us-
able software product to a customer at the end of the project.
The time available for the students to realize the project was
one semester (three months).

This paper summarizes the experiences gained in the
1996 summer term, during which we developed a CASE
tool for distributed systems engineering with a team of 14
students. Aside from organizational issues we will put spe-
cial emphasis on how the concepts of our implementation
platform, the Java [7] programming language and its li-
braries, work together with standard object-oriented soft-
ware engineering techniques.

We think that most of our experiences from this course

�This work was partly carried out within the Subproject A6 of the
“Sonderforschungsbereich 342” and the Project SysLab, sponsored by the
German Research Community (DFG) under the Leibniz program and by
Siemens-Nixdorf.

are of interest not only for other university projects, but for
industrial software development as well.

2. The Project – Goals, Results, Future Work

2.1. The Goal: A Tool for the FOCUSMethod

The goal of the project was to develop AUTOFOCUS, a
working prototype of a CASE tool for distributed systems
engineering, comprising graphical editors for the different
views of a system. The description formalisms for these
views are embedded in the semantical framework of FO-
CUS [5], a formal development method for distributed sys-
tems. FOCUS is based on a mathematical foundation using
semantical concepts like stream processing functions [4] to
describe the components of a system. It provides precise
mechanisms for refining system specifications, enabling a
developer to prove the correctness of development steps.
The concept of AUTOFOCUS is described in detail in [11]
and [10]. Its description formalisms, for which appropriate
editors had to be implemented, are

� system structure diagrams (SSDs), which describe the
static structure of a system by a network of intercon-
nected components exchanging messages over chan-
nels,

� state transition diagrams (STDs, or automata) to de-
scribe the behaviour of system components, and

� extended event traces (EETs, basically a subset of
Message Sequence Charts as standardized in ITU
Z.120 [12]) used to specify exemplary system runs.

It should be obvious that a tool that complex can hardly
be implemented entirely in an educational course during a
period of three months. Therefore, it was the goal of the
course to act as a starting point for the whole project and to
implement the basic components of the tool.

2.2. Project Results

2.2.1. Tool Prototype

The main result of the project course is a working proto-
type of AUTOFOCUS. As can be seen from the architectural

RCS

1 2 … n

FRED (Focus
Repository Daemon)

Server Threads

Version Control

UNIX File System

Server

Browser

Client 1

Editors

Repository Proxy Repository Proxy

Browser

Client n

Editors

LAN / WAN

Figure 1. Architectural View of the Current
AUTOFOCUS Implementation

view in figure 1, AUTOFOCUS is a typical client/server ap-
plication with a central repository where all development
documents are stored. An arbitrary number of clients can
connect to the repository over a network using TCP/IP-
based sockets. Within the server process, a dedicated thread
is running for each client. The repository is currently docu-
ment-based, mapping development documents to files on a
UNIX file system. Access and version control is provided
by the UNIX revision control system RCS [3].

The AUTOFOCUSclient contains a project browser used
to navigate through the development projects and docu-
ments in the repository, and three graphical editors neces-
sary to edit the different diagram types. Both the clients and
the server, which encapsulates the RCS system, are com-
pletely implemented in Java.

To provide an impression of the current status of AUTO-
FOCUS, a screen hard-copy of some parts of the client ap-
plication is shown in figure 2.

2.2.2. Documentation

Besides the tool prototype, a set of documents has been
produced in the project: the system specification document
[20], the system design document [19], and class design
documents (the latter suffered from the time pressure in the
final stages of the project and must still be completed), as
well as a user’s guide for the AUTOFOCUStool, from which
an HTML online help was generated.

2.2.3. Statistics

The results just outlined were achieved by a group of 14
students within three months, with one and a half months
used for implementation. The whole project thus spans 42
person months with implementation consuming 21 person
months. The documents produced in the project comprise
roughly 100 pages, not including the partially incomplete
class design documents. The current size of the AUTOFO-
CUS prototype is around 32 kLoC (900 kByte) written en-
tirely in Java.

2.3. Further Development

Based on the current status, we are planning a series of
further development activities that will mostly be carried
out in student projects.

Currently, AUTOFOCUS is re-designed, mainly because
of two reasons: First, all user interface parts will be re-
worked to fit into the new version 1.1 API [24] of Java, and
second, there is some amount of “runaway code” which has
been implemented in the final stages of the project under
heavy time pressure and is thus not very well structured and
documented.

Although AUTOFOCUS can be used for real work in its
current state, most of its potential as a tool based on formal
foundations has not been realized yet. Extensions of AUTO-
FOCUSto be implemented are

� consistency checks for all documents in a development
project,

� interfaces to external verification tools, like model
checkers and theorem provers,

� simulation, and

� code generation.

While the consistency checks are based on the well-defined
abstract syntax and context conditions of the AUTOFO-
CUSdescription techniques, the latter three extensions build
upon the formal semantics defined for them.

Figure 2. Project Browser, STD Editor, and EET Editor of the AUTOFOCUS Client

3. Project Organization

As in the former runs, we tried to keep the course as
close as possible to a real industry project [1, 2]. The an-
nouncement of the course, published in our local university
news groups and web pages, was for instance formulated
like typical job offerings found in newspapers. After the
registration we ran application interviews with the students
in order to assign them to developer teams according to their
interests and their knowledge in specific areas.

However, a number of circumstances usually found in
industry projects could not completely be reproduced in our
course. In contrast to “reality”, where requirements of a
new system are often unclear and keep changing even dur-
ing the actual development process, the requirements for
our tool were clearly stated at the beginning of the course,
following a few months of conceptual work by the tutors.

Furthermore, our student developer team was mostly un-
experienced in software engineering issues, and many of
them as well in object-orientation. We tried to alleviate this
problem by extensive training during the first weeks of the
course (two sessions per week, which were later used for
project meetings). Probably the biggest difference to indus-
try projects was our decision to base the development of a
new software product on a technology, namely the Java plat-
form, that was completely new for us and not yet evaluated.

The latter two issues were not felt as drawbacks com-
pared to real-world development because they made the
project situation even more challenging for our participants.

3.1. Developer Teams

The architectural view of the AUTOFOCUStool depicted
in figure 1 already implies a coarse modularization into the

following subsystems:

� a central repository,

� a set of graphical editors for

– extended event traces and

– system structure diagrams and state transition di-
agrams, both of which are basically editors for
binary graphs and thus similar to implement,

� a central component on the client side coordinating the
editors and providing a graphical interface to organize
the documents in the repository.

In order to achieve a consistent internal data representation
for all development documents, the actual data in the doc-
uments were kept separate from the editors and grouped
together in an own module, following the Model-View-
Controller paradigm [13]. The resulting five subsystems
were each implemented by a team of two to three students.

3.2. Development Process

The development process we followed in the course was
influenced by Denert [6] and had furthermore grown out of
the experiences of the former two runs of the course. Our
recommendations in that respect are summarized in [2].

We spent two weeks on system specification, three
weeks on system design, six weeks on implementation, and
two weeks on test and integration. Each phase was con-
cluded by a milestone with a set of deliverables. Following
each milestone, reviews were held for quality assurance.

We intended to make extensive use of prototyping, es-
pecially for the user interface parts of AUTOFOCUS, where
we planned to use an evolutionary GUI prototype as a foun-
dation for the final user interface of the system. Due to the
poor quality of the user interface builders available for Java
at that time (see also section 5), this was not possible; in-
stead we started coding the user interface classes directly in
Java very early.

4. Experiences

The reasons we chose Java as development language for
AUTOFOCUSarose from former experiences with C++ and
itcl [14], which were used in the first two runs of the
course. Each of these languages had its deficiencies: C++
suffered from long turnaround times, the complexity of the
language, and the necessity to manage storage by hand. Fur-
thermore, the C++ implementations available to us suffered
from the absence of easily usable, stable, and portable li-
braries and did not support important features of the lan-
guage, like exception handling.itcl, an object-oriented

variant of thetcl scripting language, did not have most of
these drawbacks, but the language is, especially for teach-
ing purposes, not very elegant, has no strong typing, and the
programs run very slowly.

Java seemed to incorporate the virtues of both of these
languages, avoiding their disadvantages. Another reason to
choose Java was that the novelty, and the attention it was
gaining in the media made it an interesting and appealing
language for attracting interested students for the practical
course.

In the following, we will examine whether Java could
fulfill our expectations and also how well it supported the
design process and the transition from analysis to design.

4.1. The Java Platform

In the whole, Java could be easily learnt by the students
of our course, most of which had experience with C, but
were not familiar with object-oriented languages. This ex-
perience differs from the one with C++ in the first course,
where it took a long time before the students could master
more than a basic set of features. Surprisingly, with Java
the transition seemed easier because here it is hard to write
“non-object-oriented” programs and developers are forced
to change their habits quite radically.

4.1.1. Safe Execution Environment

We think that Java’s safe execution environment and au-
tomatic garbage collection saved a lot of time because it
considerably reduced the number of errors compared to our
first project. In addition, most of the bugs were relatively
harmless, and finding and fixing them did not need much
time: Many bugs in our bug list were fixed by the responsi-
ble developers the day they were reported. The only “hard”
bug during the course, taking nearly one week to find and
fix, was caused by a bug in the standardInputStream
class, whose objects were sometimes corrupted when the
server’s load was high. In contrast, the C++ project in the
first course suffered from sporadic memory corruption er-
rors which in rare cases needed weeks to hunt down.

4.1.2. Platform Independence

The platform independence of Java could only partly ful-
fill its expectations: In principle, the code (which we devel-
oped under Solaris) could be run on other platforms. How-
ever, there were some serious deficiencies and numerous
small inconsistencies, mainly concerning the user interface
area. Currently, we have verified the versions for Solaris,
Linux and HP-UX 10, whereas it is not possible to run the
AUTOFOCUS client on HP-UX 9, Microsoft Windows, or
MacOS due to bugs of the AWT implementation. In the

case of Windows, there exist some “standard” workarounds
[26, 21] to fix the problem (modal dialogs do not suspend
the execution of the calling method), but since they all dete-
riorate the structure of the code, we chose not to implement
them, but to wait for SUN fixing the problem instead.

4.1.3. Performance

In spite of these negative experiences, we were satisfied
with the speed of the resulting code. Although the tool in its
present form has serious drawbacks with respect to its per-
formance, they are mostly due to the use of RCS as reposi-
tory: For most actions involving the repository, a new pro-
cess has to be scheduled on the server and a file has to be
read, parsed and transmitted over the network. Actions con-
cerning only the client side are surprisingly fast, even when
they impose interactive repositioning of some graphical ele-
ments and redrawing the screen of an editor. The precaution
measure to provide two modes of moving graphical objects
with the mouse, one with instant diagram update during the
move, one with update only at the end of the move, is hardly
necessary even for larger documents.

4.1.4. Single Inheritance

Compared to C++, Java supports only single inheritance,
but additionally offers so-called interfaces. This was not
felt as a deficiency: The syntactical elements of FOCUS’
description techniques could be (meta-)modeled as Java
classes in a natural way. Single inheritance was used only
for factoring out graphical information common to some el-
ements. For example, theEdge class is used as a base class
both for channels in SSDs and for transitions in STDs. In-
terfaces were rarely used: Only three were introduced over-
all, and two of these are only repositories for system con-
stants and have no methods. The remaining “real” inter-
faceTreeNode captures the common functionality of the
different entries (like projects or documents) in the project
browser.

In some cases, the standard interfaces provided by the
Java framework were implemented:Runnable was used
to create runnable menu commands, andObserver was
used for realizing the update mechanism between the clients
and the server. We suspect that during the redesign of
AUTOFOCUS, interfaces will be used more often because
we expect that more features common to some classes can
be factored out.

4.1.5. Lack of Parametric Types

Java’s lack of parametric types was first felt as a seri-
ous drawback by us because it requires the use of dynamic
casts at runtime, especially when using the powerful con-
tainer classes of theutil package, and therefore adversely

affects the type safety of the system. At some time dur-
ing the course we thought about solving this problem via a
simple, macro-based template mechanism based on the sub-
stitution of a type parameter with an actual type, similar to
the heterogeneous translation scheme proposed in the Pizza
approach [15]. In the end, we did not choose this solution
because it would have required the reworking of the already
implemented uses of container classes. Furthermore, the
students did not have any difficulties with it and there were
hardly anyClassCastException runtime exceptions.
One explanation for this is that most such casts follow a
certain pattern and concern closely related methods in the
same class: For example, the “standard” implementation
of a 1-to-many association between classesFoo andBar
uses theVector class and involves aprivate Vector
barElems attribute in classFoo andFoo methodsvoid
addBarElem(Bar), void removeBarElem(Bar),
andEnumeration barElems(). This way, care has to
be taken only when iterating over theBar elements because
the enumeration provides no explicit type information about
its elements.

4.1.6. Exception Handling

The exception handling concept of Java proved to be
valuable, especially with respect to evolutionary prototyp-
ing. We were able to implement a first prototype that lacked
most of the exception handling and could handle only the
“easy” standard cases. Later on, when the design was stabi-
lized, the code for exception handling could be added with
relatively few problems.

4.1.7. Package Mechanism

The package mechanism was very useful because it
made it possible to clearly structure the code following the
responsibilities of the developer teams. We provided one
package per team (and therefore also per subsystem, see
section 2.2) and an additional utility package for code us-
able for all teams. The package mechanism and the vis-
ibility modifiers were quickly understood by the students
and they used them as intended to hide their internal classes
from the other teams to provide shallow and comprehensi-
ble interfaces. This approach may, however, lead to mul-
tiple implementations of similar functionality, worsened by
the lack of some basic functionality in the standard libraries:
At one time in the project, two teams each built their own
simple dialog class, thus performing unnecessary work and
compromising the uniformity of user interaction. Later on,
this functionality was integrated into ourutil package.
We recommend the installation of a person or team respon-
sible for identifying, factoring out, and implementing pos-
sibleutil classes.

Another difficulty with packages is the lack of a tool for
re-working their structure: If it is necessary to move classes
between packages (or even to move whole packages), much
manual editing is needed because all classes importing the
class (or package) have to be changed.

4.1.8. Libraries

As mentioned above, one of the main reasons to use Java
was the presence of a library of standardized and easy to use
classes. To build a distributed CASE tool like AUTOFOCUS,
libraries for concurrency, network, GUI, and graphics pro-
gramming are indispensable. Apart from minor flaws, the
functionality provided by the Java libraries was sufficient
for our project in most areas. However, we were missing
some basic functionalities in the area of GUI programming.
Programming simple dialogs, toolbars, scrollable panels,
and print support did consume much time during the course,
and the migration to standard classes in new releases of the
Java libraries will also consume much time in the future.

Two very useful facilities were not available in the stan-
dard libraries at the time of the course: For the commu-
nication and the transmission of commands between the
clients and the server one team had to invent special, simple
versions of features that will be contained in the “Remote
Method Invocation” and “Object Serialization” standards of
the next release of the JDK [25]. Although that was not
particularly difficult given the standard libraries, it did cost
quite some effort.

Another feature we were missing was the lack of pow-
erful mechanisms for managing persistent storages. Our
decision to use RCS with a flat file representation of the
respective documents was very adequate for the repository
of the prototype, since we got the sophisticated locking and
revision control facilities of RCS “for free”. The granular-
ity level of a repository document, however, is too coarse
for some of the planned extensions of AUTOFOCUS. Given
our present design, complex queries like, e.g., “return all
channels on which a message with a certain datatype can
be transferred” involve the transfer of all documents from
the repository server to the client. This is not acceptable,
especially given the poor performance of the Java-RCS-
connection, which requires the creation of a new server pro-
cess for each repository action. We think that upcoming ap-
proaches like Java APIs for object-oriented databases [16]
or orthogonal persistency [27] will fulfill our needs in the
future.

4.2. Analysis and Design Techniques and Java

4.2.1. Analysis and Design Techniques

Due to the strict schedule of the course, the most im-
portant requirement for analysis and design techniques was

ease of use. Some techniques turned out to be very useful
and were well accepted by the participants: Among the no-
tations provided by the Object Modeling Technique (OMT,
[18]), we mainly used class diagrams to develop a first
meta-model of the AUTOFOCUS description formalisms.
This supported the participants in gaining insight into how
the concepts of these formalisms work together and thus
served to establish a level of common understanding among
the participants. The meta-model was subsequently refined
and could be translated almost without structural changes
into Java (see also sections 4.1.4 and 4.1.5).

The lack of useful GUI prototyping tools for Java (see
section 5) forced us to apply “handmade” rapid prototyping:
To describe user interface behaviour at an abstract level, we
used automata similar to the interaction diagrams from [6]
together with mock-up “screen shots” that were produced
using standard drawing software. Data and control flow be-
tween the different subsystems of AUTOFOCUSwere spec-
ified at a high level using a notation similar to OMT’s data
flow diagrams.

4.2.2. Design Patterns

Design patterns played an important role during the de-
velopment of AUTOFOCUS. Apart from their advantages
for educational purpose [2], their knowledge (especially of
those from [9]) is very helpful in understanding the architec-
ture of the Java libraries because they were designed using
a pattern approach (an overview over some of the patterns
built into the AWT framework is given in [8]). In some
cases, the Java libraries go one step further and provide ex-
plicit support for special patterns, thus turning an “immate-
rial” pattern into a standard framework mechanism. This is,
e.g., the case for theObserver pattern from [9].

For our system, theState pattern from [9] turned out
to be the most important one. We used it to create a
Behavior class representing the actual mode of a graph-
ical editor, and containing methods to handle user events
like singleClick andmouseDrag. Special subclasses
— like ViewOnlyBehavior andSetChannelBeha-
vior — override them to provide a behavior according to
the current mode of the editor, which can be selected via
the toolbar. During the run of the AUTOFOCUS client, all
reactions on events arising inside the canvas of an editor are
performed by its actualBehavior object.

TheState pattern was particularly useful because it al-
lowed to clearly separate GUI-related code from the code
responsible for handling user events, a concept not directly
supported by the standard event handling mechanisms of the
first version of AWT [22]. The new version 1.1 [24] pro-
vides an improved mechanism based on the delegation of
events to specialEventListener objects. This fits very
well to our approach (a possibility is to makeBehavior
an implementation of theEventListener interface) and

will make the transition to the new API smooth. Further-
more, the separation of the code for the different modes of
the editors made it easy to develop the editors step by step,
using evolutionary prototyping.

5. Tools

Although the tools provided by Sun’s Java Developer’s
Kit [23] make up just a very basic set of development tools,
they proved to be sufficient for the development of AUTO-
FOCUS. Among the tools we found missing, the most im-
portant ones were a graphical, windowed debugger, a tool
for managing and visualizing the inheritance and associa-
tion structures of the classes and packages, and a decent
GUI development tool. We hope that the upcoming inte-
grated development environments will fulfill our needs in
this respect.

Our experience with the JFactory GUI Builder V1.0 for
Solaris [17], which we wanted to use for building an evo-
lutionary prototype of the user interface, was less satisfac-
tory: We could not use the generated code because it did
not fit very well into the code structure of our project, the
screen layout during the design sometimes did not match the
screen layout of the generated programs, there were some
serious flaws with respect to multi-user capability, and the
tool crashed frequently. Therefore, we stopped using it for
evolutionary as well as for explorative prototyping (see also
section 4.2.1) very early in the development process. In the
current JFactory version V1.1, however, some of these flaws
were fixed.

Fortunately, the lack of a decent GUI builder was not a
critical point because only a relatively small fraction of the
program would have benefited from such a tool: Most of the
code concerning the user interface went into the implemen-
tation of the editor behaviors and the custom components
(like the toolbar and the tree browser). A GUI builder is
not useful at all here. However, some of the AUTOFOCUS

dialogs are not very appealing because optimizing the look
of a “hand-crafted” GUI is very tedious and consumes too
much time, especially given the poor infrastructure of the
current AWT version.

6. Conclusion

To summarize our experiences gained in the project
course, we can clearly state that Java is indeed more than
an applet-only programming language. Despite its current
deficiencies, which are, in our view, mostly problems of the
current implementations, Java turned out to be a viable plat-
form for implementing large and complex real-world appli-
cations. Compared to C++, it offers essentially greater ease
of use, making it especially suitable for educational pro-
gramming projects.

References

[1] W. Bartsch, K. Bergner, R. Hettler, and B. Paech.Studen-
tenEntwickelnUniversellesHochschulinformationssystem:
Erfahrungen aus einem Softwaretechnik-Praktikum. In
SEUH ’95, Report 44 of the German Chapter of the ACM.
Teubner-Verlag, 1995.

[2] K. Bergner. Under pressure – recommendations for man-
aging a practical course in software engineering. InPro-
ceedings of Software Engineering: Education & Practice
(SE:E&P’96). ACM Press, 1996.

[3] D. Bolinger and T. Bronson.Applying RCS and SCCS: From
Source Control to Project Control. O’Reilly & Associates,
Inc., 1995.

[4] M. Broy. Functional specification of time sensitive com-
municating systems. In M. Broy, editor,Programming and
Mathematical Models. Springer, 1992. NATO ASI Series F:
Computer and Systems Science, Vol.88.

[5] M. Broy, F. Dederichs, C. Dendorfer, M. Fuchs, T. Gritzner,
and R. Weber. The design of distributed systems - an intro-
duction to FOCUS. TUM-I 9202-2, Technische Universit¨at
München, 1993.

[6] E. Denert.Software-Engeneering. Springer, 1991.
[7] D. Flanagan.Java in a Nutshell: A Desktop Quick Reference

for Java Programmers. O’Reilly & Associates, Inc., 1996.
[8] E. Gamma. Java und Design Patterns – Eine vielver-

sprechende Kombination.Java Spektrum, pages 18–24,
September/October 1996.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns: Micro-Architectures for Reusable Object-Oriented
Design. Addison-Wesley, 1994.

[10] F. Huber, B. Sch¨atz, A. Schmidt, and K. Spies. AutoFo-
cus – A Tool for Distributed Systems Specification . In J. P.
Bengt Jonsson, editor,Proceedings FTRTFT’96 – Formal
Techniques in Real-Time and Fault-Tolerant Systems, pages
467–470. LNCS 1135, Springer Verlag, 1996.

[11] F. Huber, B. Sch¨atz, and K. Spies. AutoFocus – Ein
Werkzeugkonzept zur Beschreibung verteilter Systeme . In
U. H. H. Hermanns, editor,Formale Beschreibungstech-
niken für verteilte Systeme, pages 165–174. Universit¨at
Erlangen-N¨urnberg, 1996. Erschienen in: Arbeitsberichte
des Insituts f¨ur mathematische Maschinen und Datenverar-
beitung, Bd.29, Nr. 9.

[12] International Telecommunication Union, Geneva.Message
Sequence Charts, 1996. ITU-T Recommendation Z.120.

[13] G. E. Krasner and S. T. Pope. A cookbook for us-
ing the Model-View-Controller user interface paradigm in
Smalltalk-80. Journal of Object-Oriented Programming,
1(3):26–49, August/September 1988.

[14] M. J. McLennan. �incr Tcl� — Object-Oriented Program-
ming in Tcl. AT&T Bell Laboratories, 1247 Cedar Crest
Boulevard, Allentown, PA 18103 (USA), 1993.

[15] M. Odersky and P. Wadler. Pizza into Java: Translating the-
ory into practice. InProceedings of the 24th ACM Sym-
posium on Principles of Programming Languages, January
1997.

[16] Poet Software. Poet Homepage, 1996.http://www.
poet.com.

[17] Rogue Wave Software, Inc., 850 SW 35th St., Corval-
lis, OR 97333 USA. JFactory – The Visual Interface
Builder for Java, 1996. http://www.roguewave.
com/products/jfactory/jfactory.html.

[18] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and
W. Lorensen. Object-Oriented Modeling and Design.
Prentice-Hall International Inc., 1991.

[19] STP-96 Team. AutoFocus Systementwurf Version 2.1,
1996. http://autofocus.informatik.tu-
muenchen.de/Results/systementwurf21.ps.
gz.

[20] STP-96 Team. AutoFocus Systemspezifikation Version
2.0, 1996. http://autofocus.informatik.tu-
muenchen.de/Results/systemspez20.ps.gz.

[21] SUN Microsystems, 2550 Garcia Ave., Mountain View,
CA 94043-1100 USA. AWT Modal Dialog Blocking
Bug & Workaround, 1996. http://java.sun.com/
products/JDK/1.0.2/AWTModalBug.html.

[22] SUN Microsystems, 2550 Garcia Ave., Mountain View,
CA 94043-1100 USA. Java AWT: Delegation Event
Model, 1996. http://java.sun.com/products/
JDK/1.1/designspecs/awt/events.html.

[23] SUN Microsystems, 2550 Garcia Ave., Mountain View,
CA 94043-1100 USA.The Java Developer’s Kit, Version
1.0.2, 1996. http://java.sun.com/products/
JDK/1.0.2/.

[24] SUN Microsystems, 2550 Garcia Ave., Mountain
View, CA 94043-1100 USA. JDK 1.1 Preview, 1996.
http://java.sun.com/products/JDK/1.1/
designspecs/index.html.

[25] SUN Microsystems, Inc., 2550 Garcia Ave., Mountain View,
CA 94043-1100 USA. Java Distributed Systems, 1996.
http://chatsubo.javasoft.com/current/.

[26] T. Tempelmann. Modaldialogs.java, 1996.http://www.
muc.de/˜tt/java/ModalDialogs.java.

[27] University of Glasgow, Department of Computer Science.
PJava – The Persistent Java Project, 1996.http://www.
dcs.gla.ac.uk/pjava/.

