
Traces of I�O�Automata in Isabelle�HOLCF

Olaf M�uller� and Tobias Nipkow��

Institut f�ur Informatik� Technische Universit�at M�unchen
D������ M�unchen� Fax �������������	�

fmueller�nipkowg�informatik�tu�muenchen�de

Abstract� This paper presents a formalization of �nite and in�nite se�
quences in domain theory carried out in the theorem prover Isabelle�
The results are used to model the metatheory of I
O automata� they
are� however� applicable to any trace based model of parallelism which
distinguishes internal and external actions� We make use of the logic
HOLCF� an extension of HOL with domain theory and show how to
move between HOL and HOLCF� This allows us to restrict the use of
HOLCF to metatheoretic arguments while actual re�nement proofs be�
tween I
O automata are carried out within the simpler logic HOL� In
order to evaluate the formalization we prove the correctness of a gener�
alized re�nement concept in I
O automata�

� Introduction

This paper is concerned with formal models of �nite and in�nite behaviours of
concurrent automata in a theorem prover� The aim of this work is to provide
the formal basis for the veri�cation of distributed systems� We believe that it is
not su�cient to merely use a theorem prover to discharge externally generated
proof obligations but that the metatheory of the underlying formal model should
also be supported by the theorem prover� This does not only rule out potential
sources of unsoundness �like external veri�cation condition generators�� It also
provides a greater degree of �exibility because we do not need to hardwire certain
proof methods but can derive new ones from the metatheory at any point�
This work is carried out in the context of I�O automata �IOA�� a popular

model of distributed systems which has been used for a number of non	trivial
applications� e�g� in the area of communication protocols
�� �
� The results� how	
ever� apply to any trace based model of parallelism which distinguishes internal
and external actions�
The starting point for our work is an existing formalization of I�O automata

in Isabelle�HOL� the higher order logic of the theorem prover Isabelle
��
� �Un	
less noted otherwise� HOL will refer to Isabelle�HOL rather than Gordon�s HOL
system
�
�� The capabilities of this formalization have been illustrated with two
protocol veri�cations
��� ��
 where Isabelle was also combined with a model

� Research supported by BMBF� KorSys�
�� Research supported by ESPRIT BRA ���
� Types�

checker� However� moving to more sophisticated examples we realized some in	
adequacies of our formalization which are caused by the fact that we model
traces as functions from time to actions� In particular� this formalization was
restricted to a rather limited re�nement notion�

The purpose of this paper is to provide I�O automata with a new and more
powerful model of traces based on lazy lists as in functional programming� Logi	
cally this means we leave the HOL world of total functions and enter into domain
theory� i�e� the world of partial functions and unde�ned and in�nite objects� This
step should not be taken lightly because partiality complicates the logic and the
proofs� Fortunately� Isabelle also supports HOLCF� an extension of HOL with
the notions of domain theory� Hence we can work in HOL as long as possible
and only move into HOLCF if really required� Part of this paper provides a
methodology for moving between the two levels� This allows to use HOLCF for
the more sophisticated metatheory� whereas normal re�nement proofs can still
be done in the simpler logic HOL� The main bene�t of our new model of traces is
a generalized re�nement concept which the simpler HOL model does not permit�

The overall aim of our work is to provide a tool environment for the analysis
of I�O automata� including the Isabelle formalization described in this paper� a
model checker and an appropiate abstraction methodology�

The structure of the paper is as follows� After a brief introduction to the
existing model of I�O automata in HOL �Section ��� we point out the problem
with its weak re�nement concept �Section ��� Then we introduce HOLCF and
the means for moving from HOL to HOLCF �Section ��� Finally we recast trace
theory in HOLCF �Section �� and generalize the re�nement concept �Section ���

��� Related Work

In�nite sequences are part of many trace based speci�cation formalisms� Never	
theless there is not as much related work as one might expect� as the underlying
metatheory is not always formalized� Often the theorem prover is only used to
prove re�nements� but the re�nement notion itself is not semantically embedded�
This is particularly true for a couple of case studies within the I�O automata
model � for example Fischer�s protocol
�
 and an audio control protocol provided
by Philips Laboratories
�
 � carried out in the Larch prover and Coq�

Closely related to our work are the papers of Chou and Peled
�
 and Loewen	
stein
�
� Chou and Peled model in�nite and �nite sequences as a prerequisite
for the formal veri�cation of a partial	order reduction technique in the theorem
prover HOL
�
� Their formalization models sequences as the disjoint union of
�nite lists and the type nat�� which represents in�nite sequences� Whereas we
can build on top of a logic describing domain theory in general� they provide
such concepts as pre�x ordering or limits of ascending chains in a more ad hoc
fashion tailored for their speci�c dataypes� Loewenstein develops a formal the	
ory of simulations between in�nite automata in the theorem prover HOL� His
sequences are functions of type nat��� Finite sequences are just seen as pre�xes
of in�nite sequences� they are not explicitly used to describe system behaviour�

�

but to facilitate the proofs� and therefore less requirements than in our setting
are imposed on them�
Besides domain theory there are other logical frameworks that apply to the

modelling of �nite and in�nite sequences� Feferman
�
 develops a generalized
recursion theory which does not need continuity for �xed point recursion and
applies it to potentially in�nite sequences� This approach has not been formalized
in a theorem prover until now� Coinduction
��
 provides another computation
scheme based on bisimulations� but deals only with in�nite or �nite terminat	
ing sequences� and it is not obvious how to extend this approach to deal with
computation on �nite nonterminating sequences�

� I�O�Automata in HOL

HOL notation� All formulas have been taken directly from the Isabelle input
and translated automatically into LaTEX� thanks to a version of Isabelle�HOL
that allows the use of mathematical symbols like � or ��
Set comprehension has the shape fe� Pg� where e is an expression and P a

predicate� The projection functions on pairs are called fst and snd� Tuples are
pairs nested to the right� e�g� �s�a�t� represents �s��a�t��� All functions in HOL are
total and the type constructor is�� If f is a function of type ����� � application
is written f x y� If there is only one argument we sometimes write rather f�x�
than f x� Function composition is de�ned as �f o g��x� � f�g�x��� Conditional
expressions are written if A then B else C�

��� I�O Automata

I�O automata are �nite or in�nite state automata with labelled transitions and
were initially introduced by Lynch and Tuttle
��
� The formalization in HOL
sketched in this section represents only a fragment of the theory one can �nd in
recent papers
�
� For example� we do not deal with fairness or time constraints�
The details of the formalization can be found in a previous paper
��
� Here we
focus on how to model traces and the re�nement concept�
In the HOL model� an action signature is described by the type

� signature � �� set � � set � � set�

The �rst� second and third component of an action signature S is extracted with
inputs� outputs� and internals� Furthermore we have

actions�S� � inputs�S� � outputs�S� � internals�S�
externals�S� � inputs�S� � outputs�S��

Action signatures have to satisfy the following disjointness condition�

is asig�triple� � �inputs�triple� � outputs�triple� � fg� �
�outputs�triple� � internals�triple� � fg� �
�inputs�triple� � internals�triple� � fg�

�

An IOA is a triple of type

�����ioa � � signature � � set � �� � � � �� set

�where the parameters � and � represent the type of actions and states� subject
to the following predicate�

IOA �asig�starts�trans� � is asig�asig� � starts �� fg � state trans asig trans

Predicate state trans requires in particular that the transition relationship is
input	enabled�

state trans asig R � ���s�a�t�	R� a	actions�asig�� �
��a	inputs�asig�� �s� �t� �s�a�t�	R�

The components of an IOA are extracted by asig of� starts of� and trans of� The
actions of an IOA are de�ned acts � actions o asig of�

��� Executions and Traces in HOL

An execution�fragment of an IOA A is a �nite or in�nite sequence that consists
of alternating states and actions� In HOL it is represented as a pair of sequences�
an in�nite state sequence of type nat � state and an action sequence of type nat
� �action�option where

datatype ���option � None j Some���

using an ML	like notation� A �nite sequence in this representation ends with
an in�nite number of consecutive Nones� Using this representation� a step of an
execution	fragment �as�ss� is �ss�i��a�ss�i���� if as�i� � Some�a�� Formally�

is execution fragment A �as�ss� �
�n a� �as�n��None
� ss�Suc�n���ss�n�� �

�as�n��Some�a�
� �ss�n��a�ss�Suc�n���	trans of�A��

Note that there is no requirement that None be followed only by None� Nones
may occur at arbitrary points in the sequence� indicating that no action has been
performed� In the trade this is known as �invariance under stuttering�
�
� An
example execution	fragment is shown below�

as� Some�a�� Some�a�� None Some�a�� None � � �
ss� s� s� s� s� s� � � �

An execution of A is an execution	fragment of A beginning in a start state of A�

executions�A� � f�as�ss� � ss���	starts of�A� �is execution fragment A �as�ss�g

If we �lter the action sequence of an execution of A so that it has only external
actions� we obtain a trace of A� The traces of A are de�ned by

traces�A� � f�lter��a�a	externals�asig of�A�� as � �ss� �as�ss�	executions�A�g

where �lter P replaces Some�a� by None if P�a� does not hold�

�lter P as � �i� case as�i� of
None � None
j Some�a� � if P�a� then Some�a� else None

�

b b b� �

ext int

b b�
ext

� �

�
�
�
��I

speci�cation level

weak re�nment mapping

implementation level

Fig� �� Simulation by a weak re�nement� ext external action� int internal action

��� Re�nement Mappings in HOL

A re�nement mapping f maps the states of a concrete automaton C �the imple	
mentation� to those of an abstract automaton A �the speci�cation�� The IOA
formalization in HOL supports a weak concept of re�nement mappings de�ned
as follows �see also Fig� ���

is weak refmap f C A �
�� s	starts of�C�� f�s�	starts of�A�� �
�� s t a� reachable C s � �s�a�t�	trans of�C�

� if a	externals�asig of�A�� then �f�s�� a�f�t��	trans of�A�

else f�s� � f�t��

The following theorem proved in HOL states that the existence of a weak re�ne	
ment mapping implies that the traces of C are contained in those of A�

IOA�C� � IOA�A� �
externals�asig of�C�� � externals�asig of�A�� �
is weak refmap f C A

� traces�C� � traces�A�

This notion of a re�nement mapping is weaker than the ones usually used
in the literature
��
 because it does not allow internal actions in the abstract
automaton� In particular� is weak refmap ��x�x� C C does not hold for all C�

� Problems with the HOL Model

��� Example for Necessity of Normal Forms

Unfortunately the I�O automata model using the datatype option has some
drawbacks� Informally speaking� None stands for nothing� but it is not really
nothing� Therefore traces di�er only because of a di�erent number of Nones in
them� although they are semantically equivalent� This leads to an inadequate
representation of the notion of re�nement� as the following example shows�
Let A and C be the two automata in Fig� �� where act and int are an external

and internal action respectively� In HOL this becomes

�

A C

s t s’

int

act

act

Fig� �� Observably equal I
O�Automata

A � ��fg�factg�fintg��fsg�f�s�act�t���t�int�s�g�
C � ��fg�factg�fg��fs�g�f�s��act�s��g�

These are observably identical automata� as int is internal� Therefore we
would expect traces�C� � traces�A�� Now consider the action sequence as �
�i�Some�act�� We have as 	 traces�C� but as �	 traces�A�� In our representation
as is not a legal trace of A� because every in�nite execution of A has also in�nitely
many internal actions int and �ltering internal actions yields Nones� which cannot
be eliminated further� Therefore A cannot produce as but only some sequence
like

as� � �i�if even�i� then Some�act� else None

Notice that as� is also a possible trace of C� because our formalization allows the
insertion of a �nite number of Nones� our automata allow �stuttering�� but they
do not allow �mumbling�
�
� i�e� the removal of None	steps which should not be
observable�
Within this representation it is generally not possible to establish a re�ne	

ment� if the abstract automaton has internal actions� In other words� the weak
re�nement mappings de�ned in Section ��� are already the most general re�ne	
ment notion we could prove in this representation� This is a severe restriction
we will now try to lift�

��� Requirements for a Datatype of Sequences

What we really need are normal forms of traces� where Nones are not allowed
within a trace� but only at the end to indicate in�nity� Such a normal form can
be de�ned by demanding a monotone function f between traces that serves as
an index transformation�

NF�tr� � �nf� �f� mono�f� � ��i� nf�i��tr�f�i��� �
��j� j �	 range�f�
� tr�j�� None� �
��i� nf�i��None
� �nf�Suc i�� � None�

Here �x�P�x� denotes Hilbert�s description operator which stands for some a
satisfying P�a�� But the de�nition of NF shows already that such index trans	
formations are very awkward to handle� Another complication is the de�nition

�

of in�nite concatenation which will be necessary in a more general re�nement
proof�
Therefore we investigated di�erent models of executions� The starting point

was a collection of requirements for an abstract datatype of executions� These
requirements are extracted from the proof outlines of IOA metatheory and will
become clear in later sections when the proofs are described� Firstly� we need
�nite and in�nite sequences� Secondly� operations on them should include hd� tl�
map and �lter� Thirdly� a predicate �nite should exist and in�nite concatenation
must be expressible� All the above requirements are ful�lled very naturally by the
well	known notion of �lazy lists� from functional programming� HOLCF directly
supports the de�nition of lazy lists� Therefore we decided to model traces and
executions in HOLCF�

� HOLCF

��� Introduction

HOLCF
��
 extends HOL with concepts of domain theory such as complete
partial orders� continuous functions and a �xed point operator� As a result� the
logic LCF
��
 constitutes a proper sublanguage of HOLCF�
In HOLCF there is a special type for continuous functions� Elements of this

type are called operations� the type constructor is denoted by � in contrast to
the standard function type constructor �� For abstractions and applications of
operations a speci�c syntax is introduced� The term �x�t denotes an abstraction
of type ��� � and the term f	x denotes an application with f of type ��� �
HOLCF uses Isabelle�s type classes to distinguish HOL and LCF types� More

precisely� it introduces a type class pcpo of pointed complete partial orders� which
becomes the default type class of HOLCF� It is a subclass of term� the default
type class of HOL� The function space constructor� has arity �pcpo�pcpo�pcpo�
i�e� ��� is of class pcpo provided both � and � are�
HOLCF comes with several standard domains� tr� the truth values� which

are HOLCF�s counterpart to HOL�s bool� is a �at domain with the elements TT�
FF and
� Operations on them include andalso� orelse and neg� which are strict
extensions of the standard predicates ��� and � on bool�
HOLCF also provides a datatype package
��
 that allows to introduce pcpo

datatypes as simple recursive domain equations� The package proves a number
of theorems concerning the constructors� discriminators� and selectors of the
datatype� as well as induction and co	induction principles� For example� the
following equation

domain ���sequence � nil j �����lazy ���sequence� ���

de�nes the domain of �nite and in�nite sequences that are built by the construc	
tors nil and
� The �cons�	operator
 is strict in its �rst argument and lazy in
the second�

�

��� Lifting

Such domain de�nitions as ���sequence above require that the argument type
� has to be a domain type� too� However� for the application we have in mind
 executions and traces of automata this is rather inconvenient� Actions
and states are more naturally modelled as HOL datatypes without dragging
unde�ned elements and partial orders into it� In general we prefer to stay on the
level of HOL types as long as possible and switch to pcpo types only if really
required� In our context the advantage would be that metatheory �in HOLCF
which o�ers more expressiveness and �exibility� can be hidden from the normal
re�nement proofs �in HOL which is easier to use��
To achieve this goal we introduce a type constructor lift of arity �term�pcpo

which lifts every HOL	datatype to a pcpo type�

datatype ���lift � Undef j Def���

The least element and the approximation ordering are de�ned very easily�

 � Undef
x v y � �x�y� j x�Undef

This is known as a �at domain� Note that
 and v are overloaded and this
de�nition only �xes their meaning at type ���lift�
If in an operation on a lifted datatype ���lift a total function on � is involved�

it is necessary to lift also this total function to a partial operation� Therefore
we introduce a number of functionals that transform HOL functions to HOLCF
operations using lift� The type variables ���� and �� are of class term� whereas
	 is of class pcpo�

bool lift bool � tr
pred lift �� � bool� � ����lift � tr�
fun lift � �� � 	� � ����lift � 	�
fun lift � ��� � ��� ������lift � ����lift�

The functional bool lift lifts booleans to truth values� pred lift lifts predicates�
and fun lift � resp� fun lift � lift functions� the �rst only the argument type� the
second also the result type� Formally�

bool lift b � if b then TT else FF
fun lift � f � �x� case x of

Undef �

j Def�y� � f�y�

fun lift � f � �x� case x of
Undef �

j Def�y� � Def�f�y��

pred lift p � �x� fun lift � ��b� bool lift �p b�� x

Had tr been de�ned as �bool�lift� which� for historical reasons� it has not been�
then bool lift would be super�uous and pred lift would reduce to a special case
of fun lift �� This shows that in principle two functionals would su�ce�

�

Using the above lifting functions has the following advantages� Firstly� these
concepts are frequently used� and abbreviating them increases readability� Sec	
ondly� continuity proofs are facilitated and automated� In HOLCF the 		reduction
on domains is subject to the continuity restriction cont�t�
� ��x�t�x��	u � t�u�
where cont�t� means that t is continuous� These continuity proof obligations are
solved automatically for all terms of the LCF sublanguage ��	abstractions and
		applications�� But for normal HOL terms these proof obligations have to be
discharged manually� Therefore the lifting functionals can serve as a �continuity
interface� to HOL� By proving them to be continuous and adding these theorems
to the automatic proof tactic� we get automatic continuity proofs also for the
combination of HOL and LCF terms�

� IOA in HOLCF

Most parts of the I�O automata model remain unchanged� Only the notions of
executions and traces are modelled in HOLCF domains� Therefore we restrict
the description of the HOLCF automata model to them� The last section laid
the foundation for such a hybrid description� as the type ���lift allows sequences
to contain elements of HOL datatypes�

��� Appropriate Modelling of Sequences

Executions and traces are �nite or in�nite sequences that we decided to model by
the domain equation ��� of section �� This means that elements of type sequence
come in � �avours�

� Finite total sequences� a�
� � �
an
nil� They are generated by processes
which terminate after a �nite number of output actions�

� Finite partial sequences� a�
� � �
an

� They are generated by processes
which do not terminate but produce no more output after some point� e�g�
by �lter� Having this type of sequences at hand allows us to distinguish
between automata that terminate and those that do not terminate but go
on producing only internal steps�

� In�nite sequences� a�
� � �
an
� � �� They are generated by processes which
do not terminate but keep on producing output�

All the operations known from functional programming with lazy lists� e�g�
hd� tl� map� �lter and the concatenation operator �� are easily de�ned��

��� Appropriate Modelling of Executions

There are several ways to model executions by the sequences described above�
Indeed� we spent a lot of time to �nd the most appropriate one�

� The actual implementation uses di�erent names for these operations because the
above ones are already used in HOL�s theory of �nite lists�

�

� First� it is inconvenient to use a pair of sequences� one for actions and one
for states

�action�state�execution � ��state�lift�sequence � ��action�lift�sequence

because this allows them to be of di�erent length� which we then have to
rule out explicitly�

� Second� one could imagine a sequence of transition triples�

�action�state�execution � ��state � action � state�lift�sequence

The advantage is that �state � action � state� triples are already part of the
automaton de�nition� But an important drawback is the redundancy of the
representation� It has to be guaranteed that the transitions coincide on the
intermediate states� a sequence � � �
Some�s��a��s��
Some�s
�a��s��
� � � is
an execution only if s� � s
�

� Finally� a pair of a start state and a sequence of action�state pairs turned
out to be most appropriate�

�action�state�execution � state � ��action � state�lift�sequence

In the sequel exec stands for variables of type execution� whereas s denotes
the start state and ex the sequence of action�state pairs� The additional
start state is necessary because otherwise the �rst transition starts from
an unknown state� However� this additional start state would have been
necessary for a sequence of transition triples as well� in order to associate a
state with the empty execution� This is necessary for simulation steps� where
the empty execution is used to simulate a step of the implementation� Here
it would be very complicated with an empty execution without state �nil� to
keep track of the connection to the state of the preceding simulation step�

��� HOLCF Formalization of Executions and Traces

The predicate is execution fragment is realized by an operation is ex fr that �runs
down� a sequence checking if all of its transitions are transition of the automaton
A� The predicate is true if the operation terminates and returns TT �for �nite
executions� or if the search does not terminate �
 for in�nite executions��

is execution fragment A �s�ex� � is ex fr A	ex s �� FF

The operation is ex fr is de�ned as a �xpoint� The following rewriting rules can
be deduced immediately from the de�nition�

is ex fr A	
 s �

is ex fr A	nil s � TT
is ex fr A	�Def�a�t�
ex� s �

bool lift ��s�a�t�	trans of�A��
andalso is ex fr A	ex t

Executions are execution fragments that begin in a start state�

��

b b b b� � �

ext

b b b b b� � � �
ext

�

�
�
�
��� �

�
�
�
���

speci�cation level

re�nement mapping

implementation level

Fig� �� Simulation by a re�nement mapping� ext external action� int�s are omitted

executions�A� � f�s�ex� � s	starts of�A� � is execution fragment A �s�ex�g

To obtain the traces of A� a mapping operation �lter act is de�ned that
projects every pair in the execution sequence onto the action component�

�lter act	ex � map	�fun lift � fst�	ex

Afterwards every non	external action of A is �ltered out�

mk trace A	ex � �lter	�pred lift��a�a	externals�asig of A���	��lter act ex�

The traces of A are the results of applying mk trace to the executions of A�

traces�A� � fmk trace A	ex� �s � �s�ex�	executions�A�g

As the de�nitions show� the formalization makes heavy use of the lifting
functionals fun lift i� pred lift and bool lift�

� Re�nement Mappings in HOLCF

In order to demonstrate the advantages of our formalization� this section shows
the proof of a more general re�nement notion than weak re�nement mappings�

	�� Re�nement Mappings

The notion of a re�nement mapping is illustrated in Fig� �� A re�nement mapping
f allows to simulate a step �s�a�t� of an concrete automaton C not only by another
step of the abstract automaton A� but by a complete move of A�

is refmap f C A �
��s	starts of�C�� f�s�	starts of�A�� �
��s t a� reachable C s � �s�a�t�	trans of�C�

� �ex� move A ex �f s� a �f t� �

��

Moves are �nite execution	fragments that begin in state f�s�� end in state f�t��
and perform only internal actions� except the action a� if that is external� This
implies in particular that a single internal actions can be simulated by a �nite
number of internal actions�

move A ex s a t �
is execution fragment A �s�ex� � �nite�ex� �
laststate�s�ex��t �
mk trace A	ex � �if a	externals�asig of�A�� then Def�a�
nil else nil�

The predicate �nite characterizes only the �nite sequences that explicitly
terminate with nil and excludes partial sequences� The precise de�nition will
be given later on in the context of induction principles� The function laststate
extracts the last state of an execution�

laststate �s�
� � s
laststate �s�nil� � s
laststate �s�Def�a�t�
ex� � laststate �t�ex�

	�� Proof Sketch of Correctness

In Isabelle we proved the following correctness theorem�

IOA�C� � IOA�A� �
externals�asig of�C�� � externals�asig of�A�� �
is refmap f C A

� traces�C� � traces�A�

By the way� this theorem shows how to use HOLCF only for metatheory� Whereas
the conclusion traces�C� � traces�A� is formalized using HOLCF� the premises�
which have to be ful�lled for re�nement proofs� can in most cases be proved in
HOL only� Let us now analyze the proof in a backwards direction� By elementary
set equalities the claim reduces to

IOA�C� � IOA�A� �
externals�asig of�C�� � externals�asig of�A�� �
is refmap f C A � exec�	executions�C�

� �exec�	executions�A� � mk trace C	�snd exec���mk trace A	�snd exec��

That is� for every execution exec� of C we have to show the existence of a
state�sequence pair exec� that has

� Subgoal �� the same trace as exec� and
� Subgoal �� is an execution of A�

This �corresponding� execution exec� can be constructed �in the spirit of the
Execution Correspondence Theorem of
�
� by concatenating all the �nite moves
of A that simulate the single steps of C� The function corresp ex simply takes
care of the start state� whereas corresp ex� does all the work by running down
the concrete execution�

��

corresp ex A f �s�ex� � �f�s��corresp ex� A f	ex �f�s���

corresp ex� A f	
 s �

corresp ex� A f	nil s � nil
corresp ex� A f	�Def�a�t�
ex� s �

snd��exec� move A exec s a t� � corresp ex� A f	ex t

Here � again denotes Hilbert�s description operator� Note that �exec always exists
because the de�nition of is refmap exactly states the existence of a simulation
move for every reachable state of C�
Note that corrsp ex� constructs an in�nite concatenation� which would have

been more complicated to de�ne in pure HOL�

Subgoal �� To prove trace equality we mainly need distributivity of trace gen	
eration over concatenation�

Lemma�
mk trace A	�ex��ex�� � �mk trace A	ex�� � �mk trace A	ex��

Whereas the move property guarantees trace equality already for every move of
A and its simulated step of C� lemma � extends these stepwise equalities to the
global equality of the whole traces of ex� and ex��

Subgoal �� Just as before� the move property yields already the property of
being an execution	fragment for every simulation move� To prove the property
for the whole corresponding execution� we need a lemma that propagates it from
single executions ex� and ex�� to their concatenation ex��ex�� Of course� ex�
and ex� have to be related in such a way that the last state of ex� is at the same
time �rst state of ex��

Lemma�
�nite�ex��

� is execution fragment A	�s�ex�� � is execution fragment A	�t�ex��

�t�laststate�s�ex��

� is execution fragment A �s�ex��ex��

Notice that the assumption �nite�ex�� is not necessary� as the proof goal of
Lemma � is execution fragment A �s�ex��ex�� reduces to is execution fragment
A	�s�ex�� if ex� is partial �nite or in�nite� But in our context we need the lemma
only under this assumption� as we argue about moves� and the move property
includes the �niteness requirement� We use the �niteness assumption because it
facilitates the proof� as we will see in the next section�

	�� Structural Induction Principles

This section shows two di�erent induction principles that were used in the proof�
For Lemma � and most of the other lemmas not mentioned here a structural
induction rule can be used that is automatically generated by the datatype
package of HOLCF�

��

adm�P� � P�nil� � P�
� � ��x xs� x��
 � P�xs�
� P�x
xs��
� �y�P�y�

Here adm�P� denotes the admissibility of the predicate P� that is P has to hold
for the least upper bound of every chain satisfying P� Often the proof of adm�P�
can be reduced to the continuity of all functions occuring in P�
Exactly this continuity condition cannot be ful�lled for Lemma �� as the

function laststate is not continous in ex�� Nevertheless Lemma � is admissible�
so we could prove it using the admissibility de�nition directly� But an easier and
smarter way is to generate a weaker induction principle that takes advantage of
the fact that we need Lemma � only for �nite ex��
To get such a principle we de�ne the predicate �nite inductively as the least

set satisfying the rules �nite�nil� and �nite�xs� �x��

� �nite�x
xs�� In this
case the inductive datatype package of HOL generates an induction rule of the
following shape �which has been used for Lemma ���

P�nil� � ��x xs� x ��
 � P�xs� � �nite�xs�
� P�x
xs��

� ��y � �nite�y�
� P�y��

	�� Proof Statistics

The formalization of I�O automata in HOLCF turns out to be rather compact�
There are about �� de�nitions on � pages including sequences� automata� traces
and re�nement� The correctness proof of the re�nment mapping includes ���
proof commands on � pages and therefore seems to be very concise compared to
the handwritten formal proof of
�
 of about � pages �only counting the relevant
parts� as a more general re�nement notion is proved there�� We argue that this
is an advantage of our formalization of sequences as lazy lists� For example�
an in�nite concatenation in our context is easily de�ned as done for corresp ex�
whereas in
�
 a limit construction of intervals given by indexes is needed�

	 Conclusion

We formalized the metatheory of I�O automata in Isabelle�HOLCF and proved
the correctness of re�nement mappings within this model� The proof appears to
be rather concise compared to handwritten proofs which is due to our formaliza	
tion of potentially in�nite sequences in domain theory� This sequence formaliza	
tion applies to every trace based model of distributed systems that distinguishes
between internal and external actions� We argue that an alternative modelling
in a setting of total function would be more complicated and less natural�
Furthermore� we provide a methodology to move between HOL� a logic of

total functions� and HOLCF� a logic of partial functions� In our context this
permits to use the more adequate logic for metatheory and for re�nement proofs�
respectively� Besides� this allows for the automation of continuity proofs in such a
combination of HOL and HOLCF� which compensates the drawback of continuity
and admissibility proofs in domain theory�

��

References

	� M� Abadi and L� Lamport� The existence of re�nement mappings� In Proc� �rd

IEEE Symp� LICS� pages 	���	��� IEEE Computer Society Press� 	����
�� S� Brooks� Full abstraction for a shared variable parallel language� In Proc� �th

IEEE Symp� Logic in Computer Science� pages ���	��� 	��
�

� C��T� Chou and D� Peled� Formal veri�cation of a partial�order reduction technique

for model checking� In T� Margaria and B� Ste�en� editors� Proc� �nd TACAS�
volume 	��� of Lecture Notes in Computer Science� Springer�Verlag� 	����

�� I� P� D�J�B� Bosscher and F� Vaandrager� Veri�cation of an audio control protocol�
In W� d� R� H� Langmaack and J� Vytopil� editors� Proc� �rd Int� School and

Symposium FTRTFT���� volume ��
 of Lecture Notes in Computer Science� pages
	���	��� Springer� 	����

�� S� Feferman� Computation on abstract data types� the extensional approach� with
an application to streams� Annals of Pure and Applied Logic� �	����		
� 	����

�� R� Gawlick� R� Segala� J� Sogaard�Andersen� and N� Lynch� Liveness in timed
and untimed systems� Technical Report MIT
LCS
TR����� Laboratory for Com�
puter Science� MIT� Cambridge� MA�� 	��
� Extended abstract in Proceedings
ICALP����

�� M� Gordon and T� Melham� Introduction to HOL� a theorem�proving environment

for higher�order logic� Cambridge University Press� 	��
�
�� P� Loewenstein� A formal theory of simulations between in�nite automata� Formal

Methods in System Design�
�	��		��	��� 	��
�
�� V� Luchangco� E� S�oylemez� S� Garland� and N� Lynch� Verifying timing properties

of concurrent algorithms� In Proc� 	th Int� Conf� Formal Description Techniques�
pages ������
� IFIP WG��	� Chapman and Hall� 	����

	�� N� Lynch and M� Tuttle� An introduction to Input
Output automata� CWI Quar�

terly� ��
���	������ 	����
		� N� Lynch and F� Vaandrager� Forward and backward simulations � part I� Untimed

systems� Information and Computation� 	�	�����	���

� 	����
	�� O� M�uller and T� Nipkow� Combining model checking and deduction for I
O�

automata� In Proc�
st Workshop Tools and Algorithms for the Construction and

Analysis of Systems� volume 	�	� of Lecture Notes in Computer Science� pages
	�	�� Springer�Verlag� 	����

	
� T� Nipkow and K� Slind� I
O automata in Isabelle
HOL� In P� Dybjer�
B� Nordstr�om� and J� Smith� editors� Types for Proofs and Programs� volume ���
of Lecture Notes in Computer Science� pages 	�	�		�� Springer�Verlag� 	����

	�� D� v� Oheimb� Datentypspezi�kationen in Higher�Order LCF� Master�s thesis�
Computer Science Department� Technical University Munich� 	����

	�� L� Paulson� Co�induction and co�recursion in higher�order logic� Technical Report
TR�

�� Univ� of Cambridge� Computer Lab�� 	����

	�� L� C� Paulson� Logic and Computation� Cambridge University Press� 	����
	�� L� C� Paulson� Isabelle� A Generic Theorem Prover� volume ��� of Lecture Notes

in Computer Science� Springer�Verlag� 	����
	�� F� Regensburger� HOLCF� Higher Order Logic of Computable Functions� In

E� Schubert� P� Windley� and J� Alves�Foss� editors� Higher Order Logic Theorem

Proving and its Applications� volume ��	 of Lecture Notes in Computer Science�
pages ��
�
��� Springer�Verlag� 	����

This article was processed using the LaTEX macro package with LLNCS style

��

