
Multi-Dimensional Measures for Test Case Quality

Christian Pfaller, Stefan Wagner
Technische Universität München
Software & Systems Engineering

85478 Garching, Germany
pfaller@in.tum.de

wagnerst@in.tum.de

Jörg Gericke, Matthias Wiemann
Siemens AG

Corporate Research & Technologies, CT PP 6
81739 Munich, Germany

joerg.gericke@siemens.com
matthias.wiemann.ext@siemens.com

Abstract

Choosing the right test cases is an important task in soft-
ware development due to high costs of software testing as
well as the significance of software failures. Therefore,
evaluating the quality of test techniques and test suites may
help improving test results. Benchmarking has been suc-
cessfully applied to various domains such as database per-
formance. However, the difficulty in benchmarking test case
quality is to find suitable measures. In this paper, a multi-
dimensional measuring of test case quality is proposed. It
has been shown that not only the number of detected faults
but also other aspects such as development artefacts like
source code or usage profiles are important. Consequences
of this multi-dimensional measure on creating a test bench-
mark are described.

1 Introduction

Testing software systems is expensive and can be time-
consuming for some types of systems. Hence, the evalu-
ation of different test techniques and test suites has been
an early identified problem. Choosing the right techniques
and prioritising the right test cases gives economic benefits.
Therefore, it is important to analyse test case quality [9].
To this end, the number of revealed faults and its efficiency,
i.e. the time spent to reveal a fault, have mainly been used
[3]. Moreover, coverage measures are exploited as a direct
measure of test case quality [2, 1]. Although, there are in-
dications that there is a correlation between coverage and
fault detection, we argue that considering only the number
of faults is not sufficient.

Problem As we discussed in [6], the number of faults as
well as coverage measures alone are not sufficient to eval-
uate test cases. Those measures miss very important issues

such as the failure rate and safety-criticality of failures as
well as their relevance to the user.

Contribution We discuss the mandatory properties of
suitable measures for test case quality and propose that only
a multi-dimensional measure can fulfil these needs. Espe-
cially, we stress the dependency of test case quality mea-
sures on the available artefacts, such as requirements spec-
ifications or test results. Thus, not only the test suites need
to be taken into account for testing benchmarks but also the
environment of the test: development process, problem do-
main, test technique and other artefacts.

Outline Section 2 discusses three aspects of test case
quality that need to be considered when defining measures.
Section 3 describes derived consequences for test bench-
marks. We close with conclusions in section 4. Related
work is cited where appropriate.

2 Three aspects of test case quality

Measuring quality is always a daunting task: The term
”quality” has to be defined first. Here, quality refers to the
appropriateness of test cases to check the quality of a sys-
tem which in turn is difficult to analyse. Therefore, the dis-
cussion focuses on three different aspects of test case qual-
ity: First, we argue that it should strongly be differentiated
what kind of object is in the focus of measures, secondly, we
structure different dimensions of test case quality by means
of the available artefacts and documents in different phases
of the development process and finally we distinguish rela-
tive and absolute measurements.

2.1 The object of measurement

Considering the variety of test quality measures, it can
be observed that the object of measurement may vary. Thus,



the object that is in the focus of the quality statement should
be precisely determined:

• A single test case

• A set of test cases (test suite)

• A method which creates test suites

A quality statement about single test cases is hardly
needed, especially since the sum of the quality assessments
of single test cases may differ from the quality assessment
for the complete test suite. A whole test suite, which is a set
of test cases, is probably the more interesting object. Since
a set of test cases could also comprise only one element,
single test cases are covered as well.

Methods that create or generate test suites are much more
difficult to measure. Like in [4], this problem is often com-
pared to the problem of benchmarking in other fields of soft-
ware engineering like performance benchmarks to analyse
computer architectures or database system. We think the
problem for test quality benchmarks is slightly different: In
performance benchmarks, the main problem is to execute
real-world problems as an experiment (e.g. it may be too
hard to produce realistic loads of queries like in the real-
world scenario in which a few thousands users interact with
the database system at the same time). Thus, only small
experiments are measured. The difficultly lies in extrapo-
lating the results to the real world. There, benchmarks are
often simplifications of the real world. The challenge is to
simplify but not to over-simplify.

In contrast to that, it is not a conceptual problem to gen-
erate test cases for known real-world software system (with
known faults) and measure the amount of uncovered faults.
The problem in measuring test case quality is the general-
isation of the results to other systems. Thus, the challenge
to simplify weighs less than to find a useful representative
that holds for all possible systems or development projects
the benchmark could be applied to. This could also imply
that a set of systems from different domains with different
characteristics is needed for a general statement.

Thus, the challenge in measuring test quality is to ensure
that a test method is able to find a certain number of faults
in any development project it is applied to. If one can state
that a test method reveals a significant number of bugs in
a certain system, then the reason for this statement may be
twofold:

• Certain classes of faults occur in a significant higher
concentration in the tested system.

• The generation method produces test cases, which are
appropriate to detect faults of this class.

Thus, a proof, that a test case generation method M ′ that
performs better than method M in project P will also out-

perform in any other project P ′, must cover the following
two parts:

(a) Describe the general characteristics C and C ′ of faults
detected by M or M ′ respectively.

(b) Show that faults of characteristics C ′ are more likely
to occur than faults of characteristics C in any project
P ′.

Whereas (a) might be hard to do in many cases (b) is proba-
bly impossible to show in most project situations. Only if a
certain similarity between different projects could be iden-
tified, which fortifies a similar distribution of faults in the
projects, one might have an idea.

2.2 Measuring against what and when?

Of course, it is desired to measure test cases by the ra-
tio of found and not found faults. Unfortunately the actual
number of faults found by a set of test cases can only be
stated after the execution of the test cases. The number of
undetected faults is not known before the end of the system
life cycle. At this point, the quality of test cases is hardly of
any interest, i.e. to improve the process in future projects.

As long as there is no certainty that the applied test
method will perform similar on other (future) projects, this
measure is of limited use for selecting a test method. A
large-scale set of benchmark systems for testing could of
course increase the confidence in a certain test method, but
it remains very hard to proof that results in benchmarks will
be equivalent for any system (cf. section 2.1). Furthermore,
it needs a lot of effort to collect data for meaningful bench-
marks that way. Thus, it would be reasonable not only to
focus on fault detection capabilities but also on further qual-
ity dimensions: Besides the quality statements in terms of
fault (non-)detection, other quality measures are often con-
sidered, for example the ever-again mentioned code cover-
age criteria. Reflection of users’ requirements in test cases
may be another quality aspect. The advantage of such al-
ternative measurements is that they can be applied in early
project phases, especially before executing the test cases.
Such measures may be applied to judge whether a test suite
seems suitable for the system and can be used to guide the
definition of suitable test cases.

It is notable that most reasonable means for measuring
test case quality do not consider test cases solely to as-
sess some quality level, but express quality in relation to
other documents, such as source code or requirements doc-
uments. Thus, the shape of measures will highly depend on
the selected documents that are taken into account besides
the test cases. Noteworthy documents may be for example
the following:



• Requirements specifications, which state single re-
quirements the system must fulfil

• Source code of the system implementation

• Test results, which show the detected failures of a test
set

• Usage profiles, which state the likelihood that a func-
tion will actually be executed by a user

• FMEA and risk analysis, which identify critical parts
in the system

• Failure reports, which show failures due to undetected
faults during the systems operation

Probably some more documents may be taken into ac-
count. The availability of these documents usually depends
on the development phase. Therefore, different measures
may be used in different development phases. Of course
a measure may also use a combination of documents, as
shown in table 1.

It defines exemplarily 12 situations in which a measure
may be of interest—of course, test cases are considered in
any measure. Situation 1 takes only test cases into account.
The number and length of test cases as well as distribution
of input events may be a possible measure. In situation 2
test cases are compared with the specification, whereas in
situation 3 test cases are compared to source code, which
leads toward the classical code coverage criteria. In this
way, for any combination of documents possible measures
may be found. Considering the six mentioned types of ad-
ditional documents, theoretically up to 26 = 64 different
classes of measures could be distinguished. Quality mea-
sures in one class are probably easy to compare or to set
in relation to each other. Measures of different classes will
in contrast be hard to compare because these may focus on
very different quality aspects. Besides structuring compara-
ble kinds of measures such a classification will also help to
select a suitable measure since selection of a measure type
will also depend on the available documents as well as on
the desired expressiveness and the usage of the measures.

In [5], the missing link between adequacy criteria and
fault detection capabilities is stated. If benchmark environ-
ments would exist that do not only focus on fault detection
but also on the some other adequacy criteria and quality
measures like described before, then these missing links be-
tween different adequacy criteria, test case quality and fault
detection could become more evident.

2.3 Relative vs. absolute quality

As last thought, it should be evaluated whether it is re-
quired to have an absolute measurement. Of course, mea-
sures which allow to state that a certain set of test cases

is bad or good seem advantageous but it seems very un-
likely that absolute and general measures can ever be found.
They would enable absolute judgements and be applicable
in project phases when test cases should be defined. So far,
the more realistic way of measurement is to focus on rela-
tive measures, which state that the test suite A is better than
test suite B.

A way that seems to allow absolute judgements is an
economic analysis [7]. Monetary units promise an abso-
lute measure of value and thereby quality of tests. How-
ever, such monetary values have also several problems when
comparing different test results [8]. For example, inflation
and currency conversion render comparisons difficult.

3 Consequences on test benchmarks

To fulfil a benchmark up to a certain level—e. g. some
test method was able to detect x percent of the known faults
of the benchmark system—can be regarded as a measure it-
self. Thus, the requirements on measures can be applied to
benchmark sets as well. In section 2.1 we noted that results
of one system might be very difficult to generalise. Bench-
marks as well as measures should therefore provide answers
to the following questions:

• What fault situations are contained in the benchmark
system (or covered by the measures)?

• What are the characteristics of the faults?

• In what kind of systems and in which project settings
are these specific fault situations of an above average
interest?

With the last point we want to express that it is required
to analyse the system and project on which a test method
should be applied to become aware if the benchmark re-
sults of a method are meaningful with respect to the project.
In systems of different application domains, like embedded
software or business applications, typical faults are likely
to be different. The same argument holds for the project
settings: The size and skills of the development team, the
quality of requirements documents, the development pro-
cess model and so on may influence the characteristics of
typical faults in the system.

We need to answer the mentioned three questions to
be able to judge whether a certain benchmark is a reli-
able tool to select a test method for a certain development
project. For most benchmarks, detailed answers to the
stated questions—especially the last one—would probably
be hard to find. Thus, it may be useful to take other dimen-
sions of quality into account as well and not only focus on
”ratio of detected faults” in a benchmark.

With the analysis of test quality measurements accord-
ing to available documents as we did in section 2.2, we



Situation 1 2 3 4 5 6 7 8 9 10 11 12
Test Cases X X X X X X X X X X X X

vs.

Requirements Specification X X X
Source Code X X X
Test Results X X X
Usage Profile X X X
FMEA / Risk Analysis X X
Failure Reports X X

Table 1. Combinations of documents used in test case quality measures

could also classify test quality benchmarks. It may be a first
step towards more meaningful benchmark sets if a bench-
mark would also give information about requirement and
code coverage, testing according to risk analyses etc. Of
course, a benchmark set would not only need to evaluate
the test system and the list of known defects but also respec-
tive other documents and artefacts as mentioned in section
2.2. A classification of measures and benchmarks accord-
ing to the relevant documents would help to select an ap-
propriate benchmark, which is used to select a test method.
Benchmarks that consider fault detection (what they usu-
ally should do) could help to judge whether certain test ad-
equacy criteria are actually linked to fault detection: For
example, if we have a benchmark that also provides means
to measure code coverage, then we are able to compare the
score in this code coverage with the score in fault detec-
tion. Since a popular benchmark would probably be used by
many test engineers, developers or researchers in this field,
a further analysis on the relation between some measures
and fault detection might be possible.

4 Conclusions and future steps

In this paper we discussed several aspects, which we re-
garded as important for a structured analysis of test qual-
ity measurement. We think such an analysis is helpful for
defining meaningful software testing benchmarks. First, it
is important to specify the object under measurement, such
as a test suite (a set of test cases) or a test method. Second,
we should not only focus on detected faults but also on other
quality dimensions, which are given by the relation of test
cases to other documents and artefacts in the development
process. Finally, we should think about absolute measure-
ment after reliable relative measures have been found.

In the future, useful measures that are be suitable to as-
sess test quality must be chosen or defined. We could clas-
sify these measures with the scheme introduced in section
2.2. Hence, also benchmarks could be classified according
to this scheme. We think this would help to select bench-
marks for specific quality aspects and would enable a more

easy comparison of different analyses of test methods de-
pending on what benchmark was used and what measures
they support. On the long term, such an analysis could con-
tribute to a better understanding of the relation between dif-
ferent quality measures. It may help to identify the mea-
sures that have a high potential to give a reliable statement
about the test quality in terms of not only fault detection. Of
course, such measures must be applied in early steps of the
development process.

References

[1] P. Frankl and O. Iakounenko. Further empirical studies of
test effectiveness. In Proc. 6th ACM SIGSOFT Interna-
tional Symposium on the Foundations of Software Engineer-
ing (FSE’98), pages 153–162. ACM Press, 1998.

[2] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experi-
ments of the effectiveness of dataflow- and controlflow-based
test adequacy criteria. In Proc. 16th International Conference
on Software Engineering (ICSE’94), pages 191–200. IEEE
Computer Society Press, 1994.

[3] N. Juristo, A. Moreno, and S. Vegas. Reviewing 25 years of
testing technique experiments. Empirical Software Engineer-
ing, 9:7–44, 2004.

[4] J. Miller, M. Roper, M. Wood, and A. Brooks. Towards a
benchmark for the evaluation of software testing techniques.
Information and Software Technology, 37(1):5–13, 1995.

[5] M. Roper. Software testing–searching for the missing link. In-
formation and Software Technology, 41(14):991–994, 1999.

[6] S. Wagner. Efficiency analysis of defect-detection techniques.
Technical Report TUM-I0413, Institut für Informatik, Tech-
nische Universität München, 2004.

[7] S. Wagner. A model and sensitivity analysis of the quality
economics of defect-detection techniques. In Proc. Interna-
tional Symposium on Software Testing and Analysis (ISSTA
’06), pages 73–83. ACM Press, 2006.

[8] S. Wagner. Using economics as basis for modelling and eval-
uating software quality. In Proc. First International Work-
shop on the Economics of Software and Computation (ESC-
1). IEEE Computer Society Press, 2007.

[9] T. Yamaura. How to design practical test cases. IEEE Soft-
ware, 15(6):30–36, 1998.


