A Formally Founded Description
Technique for Business Processes®

Veronika Thurner
Department of Computer Science, Technical University of Munich

Arcisstr. 21, 80290 Munich, Germany
email: thurner@informatik.tu-muenchen.de

December 19, 1997

Abstract

As a means of modeling typical system behavior, we derive from data flow nets a description technique
for business processes and provide it with a formal semantics based on functions and their composition.
Our description formalism features black box and glass box view on system processes, as well as a concept
of refinement which supports behavior modeling across several levels of abstraction. Thus we provide a
modeling mechanism that is both easy to understand intuitively and formally well founded, and therefore
equally adequate for the needs of application domain experts as well as system engineers in requirements
engineering.

1 Introduction and motivation

Many approaches to requirements engineering involve a detailed modeling of characteristic system
aspects such as structure, data or behavior. These models are a vital means of communication
between expert users and system analysts. Also, they are the basis for system design and im-
plementation taking place in later stages of the system development process. Consequently, the
quality of requirements specifications is a decisive factor for software quality and correction costs
[Dav93].

A basic idea of system modeling is the reduction of complexity by focussing on a single system view
and only a small set of system aspects at a time. In behavior modeling, a first step consists of the
analysis and documentation of typical system behavior in an exemplaric way. Thus, single system
runs or scenarios are examined.

In many approaches to behavior modeling that deal with exemplaric system behavior, scenarios are
employed for documenting the interaction of objects, system components or organizational units
(see, for example, message sequence charts [IT96], interaction diagrams of Booch [Boo94], sequence
diagrams of UML [BJRY7], or process object schemes [FS91]). Thus, scenarios are often arranged
according to structural system aspects, so that the behavior model is always intermingled with,
and dominated by, the system architecture. Therefore, additional constraints are added to the
behavior model which restrict the order of process execution and consequently the possible amount
of parallelism, although they represent constraints that are not due to any causal dependencies

*This work was supported by the Bayerische Forschungsstiftung.

originating from the behavioral model itself. Other techniques, such as activity diagrams in [BJR97]
or the process notion of [Kah74], already include aspects of system state in their models. However,
although this integrated modeling of several different system aspects at a time might still work with
small examples, it quickly turns to be difficult and hard to handle as system complexity increases.

In contrast to this, we apply a task oriented point of view in behavior modeling. Focussing on
the major tasks of the system under consideration, we develop a business process model that is
cross functional to the underlying structural organization and which includes the relevant behavioral
context of the system’s environment. Methodically, we begin our behavior modeling by documenting
single runs of exemplaric system behavior. As the application domain experts find it comparatively
easy to relate their share of activities in system behavior when following a specific example process,
this approach is extremely helpful for capturing and discussing the users’ view point on system
behavior and the related requirements.

To document our model of typical system behavior, we introduce a description technique that
supports behavior modeling in a way that is independant from organizational or geographical
boundaries. This modeling technique documents causal dependencies between process and their
execution that are due to the exchange of messages and events between processes. However, we do
not introduce any additional artificial sequentialization or other constraints on the order of process
execution, thus allowing for a maximum of possible parallelism in process execution.

Our modeling technique includes both a black box and a glass box view on business processes.
Furthermore, we enhance our description formalism with a refinement mechanism which supports
behavior modeling across different levels of abstraction. To reduce redundancy in our process
model, we base our process documentation on the definition of process types.

Finally, to allow unique and unambiguous modeling and to precisely relate our description technique
to models of other system views, we provide a formal semantics to our description technique, based
on functions and their composition. This type of semantics is suitable for supporting our modeling
intentions stated above, as it provides a flexible modeling and abstraction mechanism focusing on
data dependencies rather than on partially ordered sequences of events that are exchanged between
objects.

2 Concrete syntax of a description technique for business pro-
cesses

We use business processes for modeling system behavior in an exemplaric way, focussing on se-
quences of the execution of process instances. As multiple instances of a single process may occur
within the model of a system, we introduce process types for reducing redundancy. A process type
defines the interface, internal behavior and refinement structure, which are common to all instances
of a specific process type.

Each of these three aspects corresponds to a certain view on a process type. In the black box
view, the interface describes the functionality of the process type. The internal behavior, i.e. the
manipulation of data during the execution of a process is dealt with in the glass box view. Finally,
the refinement view defines the decomposition of a single process type into a network of process
types, or, the other way round, the composition of processes types of a finer granularity into a
network which realizes a process type of a coarser level of granularity.

Based on the set of defined process types, instances of these types can be composed into process
networks which desribe sequences of system behavior in an exemplaric way. The identifiers of
process instances are unique throughout the whole model of the system.

We provide a notation that consists of graphical as well as of textual elements. For the graphical
aspects of our notation, we use a derivative of data flow nets which were introduced in [DeMT79].
Moreover, we incorporate and enhance notation ideas taken from those parts of the modeling

language GRAPES V3 [Sie95] that are relevant for business process modeling. Textual aspects of
our notation are provided in extended Backus-Naur form as introduced in [BFG'93]. The non-
terminals (process-type), (function) and (predicate-expression) are not specified any further within
this work.

2.1 Black Box View

The definition of the black box view specifies the signature of a process type as evident and relevant
on the current level of granularity. Here, a process type’s name is determined as well as its bundles
of typed input and output ports. In the case that a process type is refined into a process network
within a subsequent step of development, the definition on the refined level may be supplemented
by additional input and output ports. However, these additional ports do not have to be added to
the hierarchically higher levels of granularity.

Optionally, a role may be associated with a process type. Roles are auxiliary concepts which
link process types to physical actors carrying out instances of these process types. A role can be
designed for realization by one or more human beings, a hardware/software system or a combination
thereof. Roles group processes according to different, often pragmatic aspects such as qualification,
or authorization for usage or decision taking that are necessary for process execution. Another
aspect of grouping processes by roles is the encapsulation of data that are to be manipulated by
the different processes that are associated with a role. Methodically, roles are usually introduced
towards the end of requirements engineering and during design, preparatory to distributing the
execution of process instances to the different system components.

Another optional feature states whether a process is executed within the system or by the system’s
environment. Respectively, processes are marked as internal or external. Often, this binding is
implicitly determined by the role that is associated with the process type. However, for methodical
reasons, it is helpful to allow an explicit declaration whether the execution of instances of a certain
process type takes place internally or externally to the system under consideration. By default,
process types are assumed to be internal.

iny™: amount
withdraw_ out™: money

iny™: acccount money

(a) process type withdraw_money

fffffffffff

(c) process type enter_pin with associated
role customer and external binding

request_
pin
user_interface

out” : prompt

in? : card

(b) process type request_pin with associ-
ated role user_inter face

in?™ = 100 US$ wmi

w
Com withdraw_ [
in,” = 9436028 money

(d) process instance wml of process type
withdraw_money, and assigned input

values

Figure 1: Black box definitions of process types and a process instance

Figure 1(a) shows an example of the graphical representation of a process type.

With regard to the distribution of processes to execution components later on in the development
process, roles may be associated optionally with process types. The name of the role is designated
at the lower border of the process type symbol, as shown in Figure 1(b).

External process types are executed outside of the system under consideration. As illustrated in
Figure 1(c), we denote them by a dashed circumference of the process type symbol.

In the graphical representation of the black box view of a process instance, the name of the process
type is preceded by the identifier of the process instance in a separate section of the process symbol
(confer Figure 1(d)).

Whereas the black box view merely specifies the input/output behavior of a process type, the glass
box view describes the internal manipulation of data within a process.

2.2 Glass Box View

The glass box view describes the internal manipulation of data during the execution of a process in-
stance. The modeling of nondeterminism is supported. Furthermore, the glass box view documents
pre- and postconditions of a process execution.

Thus, the glass box view documents any information on the computation scheme that derives output
data from input data, which is known at the current stage of the modeling process. Within a process
type’s computation scheme, input and output data are parameterized by the corresponding port
names. If necessary, local variables may be introduced. Depending on the degree of knowledge that
is available in the computation method, the scheme may be described informally by structured
textual comments, or more formally in mathematical notation.

Moreover, pre- and postconditions of process execution are defined. An instance of a process type
is executed only if its precondition is fulfilled, with the precondition being a predicate over the
process instance’s input parameters. Correspondingly, when the execution of a process instance
is completed, the associated postcondition holds. The postcondition is given as a predicate over
input and output parameters of the process instance.

When executing an instance of a process type, specific values are assigned to its input ports,
respecting the port types which are defined in the corresponding black box view. Output values
are determined by executing the computation scheme specified in the glass box view, using the
specific values that are assigned to the input ports.

In our notation, we do not introduce any graphical symbols for defining the glass box view on
process types, as we do not expect an adequate gain in readability and understandability at this
point. Thus, we use a textual notation, where the manipulation of data may be described either
mathematically by specifying a function, or as text which may be enhanced by mathematical
elements. Pre- and postconditions are specified as predicate expressions.

glass box process type (process-type) = {

computes (text) | (function)
pre (predicate-expression)
post (predicate-expression)

}

The glass box view of our example process type withdraw_money may be given as follows, where
we employ a textual representation with some mathematical elements for defining the computation
method.

glass box process type withdraw_money = {
computes outP™ = fI™m(int™, iny™), with
requested money if requested amount smaller than 400
requested money if requested amount greater than 400
and account deposit greater than

WM (Gnim™, iny™) = or equal to requested amount
no money if requested amount greater than 400
and account deposit smaller than
L requested amount
pre true
post true

2.3 Refinement View

The refinement view describes how a process type of coarse granularity is refined by a process
network [Bro93]. Such a process network is constructed from process types of finer granularity.
They are connected via interfaces which were defined in the black box view, by connecting an
output port of one process to an input port of another process, thus building an internal channel.
A channel is denoted by the pair of its ports according to (outport,inport). We restrict our model
to acyclic structures.

Furthermore, the refinement view specifies how input and output ports of the process type on
the coarser level of granularity are mapped on the input and output ports of the refining process
network. In a correct refinement, all the ports on the coarser level of granularity are redirected to
corresponding ports on the refining level. Consequently, the refining process network contains at
least the equivalents to the ports of the coarse grain process type.

Figure 2 illustrates the refinement of process type withdraw_money from our example in Figure
1(a).

withdraw_money

retrieve_ out?® : money_ out;™: money
cash

in’ :amount

iny™: amount

book
00K out?® : db_lo
to_ pout, - ¢ 09

iny™: account in%® : account
database

Figure 2: Refinement of process type withdraw_money

Operator * symbolizes the duplication of the message assigned to a port, and the redirection of the
copies to several subports on the refinement level.

Possibly, within a refining process network, a single process type may occur multiply. However,
in our graphical representation these different occurances may easily be distinguished by their
geometrical position within the diagram. Thus as well, the structure of connecting channels may
be defined without ambiguities.

When a new instance of a process type is created, it is assigned an identifier which is not yet assigned
to any other process instance within the model. Furthermore, if a refining process network is defined
for this process type, a corresponding refining network of process instances is created as well.

3 Semantics

The semantics of our description technique for business processes is based on functions and their
composition. Compositionality is necessary for formalizing refinement, or, if seen from another
angle, the composition of single processes to a process network. This usage of function composition
is related to computation forms which are discussed e.g. in [Bro92].

In the definition of semantics, we assign a function with adequate input/output signature to each
process type. This function formalizes the computation scheme associated with the process type.

Some existing approaches to process modeling define a semantics based on event traces (for example
[Hoa85]). The technique of event traces may be applied efficiently for modeling process networks
where the execution of processes is partially ordered.

In our notion of processes, however, we also allow modeling on a more abstract level which is
especially helpful at the beginning of the modeling process, when the modelers’ understanding of
business processes is still rather vague. We achieve this by focussing on process causality due to

data dependencies. A data flow from a process A to its successor process B indicates that at some
time during its processing, process B receives input from process A. However, we do not restrict
process execution by specifying any relationship between the end of the execution of process A and
the beginning of process execution of B, thus allowing flexible refinement possibilities of A and B
as well as their interaction at later stages in the modeling process.

In the following, let

e PT denote a set of identifiers of process types,

P1I denote a set of identifiers of process instances,

P denote a set of identifiers of ports,

F denote a set of function symbols, and

S denote a set of data sorts.

3.1 Semantics of an isolated process type

The black box definition of a process type specifies the typed input/output functionality of a process
type. On the level of semantics, this aspect corresponds to the definition of the signature of the
function that is associated with a process type. Thus, with a process type p € PT we associate a
function fP € F with functionality

fct fp : szf X ... X Sinfp — (Sout‘f X ... X Soutﬁ,’p)a

where, respectively, sipr,...,8;mr € S and souer, ..., 8oz, € S denote the sorts associated with
ip °op
P

input ports inf, ... ,inip € P and output ports out?, ... south € P of process type p.

The computation scheme that corresponds to process type p is specified by the body of function
fP. The explicit documentation of the function body corresponds to the computation method that
is given by field computes in the glass box definition of a process type. Precondition pre of the
process type is incorporated in the function body as well.

With our example process type withdraw-money from Figure 1(a), we associate a function
fwithdraw-money whoge functionality

fet fuwithdraw_money . gmount x account — (money)

mirrors exactly the input/output situation of the corresponding process.

On the level of semantics, process execution is equivalent to the evaluation of the associated function
on specific input values.

So far, we assumed our processes to be deterministic. However, the semantics can easily be gener-
alized to cover nondeterministic processes as well. We achieve this by associating with a process
type not a single function, but a set of functions. For every single execution of an instance of
this process type, we nondeterministically choose one function of the associated set, which is then
executed to compute the result in a deterministic fashion.

3.2 Semantics of a process network

Via the concept of refinement, a process type is represented in more detail by a process network.
Within this process network, process types of finer granularity are linked by connecting some of
their input and output ports.

On the level of semantics, refinement of a process type to a process network corresponds to rep-
resenting a function by the composition of other functions. When the refinement level contains
supplementary input and output ports that were not relevant or not yet known on the coarser

levels of refinement, a restriction of the input/output functionality of the composition of refining
functions is necessary as well.

In Figure 2, our example process withdraw_money from Figure 1(a) is refined into a process network
which is constructed from the process types retrieve_cash and book_to_database. With the refining
process network, we associate function f7¢f (“”thdm“’—mo”ey) with signature

fet fref(withdraw-money) . g ount x account —» (money x db_log).

This signature of the refining function fref(withdraw-money) ynay he restricted to the signature of the
original function fwithdraw-money a5 fo]lows.

fwithdraw_money _ fref(withdraw_money)

1,21

Here, indices at the left of resctrction operator | . symbolize input restriction, whereas indices at
the right denote a restriction of output.

In the refining process network, process types retrieve_cash and book_to-database occur. With
these, functions freirieve-cash anq fbook-to-database yre ggsociated, with the following signatures.

fet fretrieve_cash amount — (money)

fct fbook-to-database , amount X account — (db_log)

Function fref(withdraw-money) pmay he expressed by composing its refining functions. The first
component of the result tuple of fref(withdraw-money) g Jetermined by function fretrieve-cash the
second component by function fb0ok-to-database ccording to

fref(withdraw_money) (,L-nllum’ Zn'zZum) — (f{etrieve_cash (,Lnllum)’ ffook_to_database (,L-nllum, ,Lnéum))

for input parameters of sort amount assigned to port in}’™ and of sort account assigned to port
iny™. Here, fP(iny,...,in;) denotes the oth component of the resulting output tuple (o1,...,0,,)

of fP(in,...,in;), where 1 < o < 0, holds.

Analogously to multiple refinement of process types, the composition of functions across different
levels of hierarchy may be executed several times.

4 Syntactic enhancements: switches

For modeling purely exemplaric system behavior by using business processes, decision statements
with different possible outcomes within a process network are not necessary, since we model merely
that system behavior that was actually executed in a specific exemplaric system run. Possible
alternatives of the specific system run which were not actually executed are not modeled. Rather,
the different observed system runs are modeled as a set of exemplaric behavior.

Process networks that differ only within a few sections, but which otherwise coincide with respect
to structure and content, we refer to as variants. For reducing redundancy within the model
of process networks obtained from exemplaric system runs, we carry out some abstraction and
comprise the set of variants within a single process network. Depending on the degree of similarity,
alternative process networks may either be united to their superset, or combined by introducing
decision processes, which we call switches.

Figure 3 illustrates process networks on the second refinement level of our example process
withdraw_money. Depending on the values of the input parameter of sort amount, different
variants of process type check_deposit and conditional_retrieve_cash are executed, which produce
different results or, respectively, consume different input.

Each variant is a process type. We symbolize the similarity of alternative process types by type
names that differ merely in a raised index. The variants of process type check_deposit in Figure 3

(amount < 400)
retrieve_cash

in® :amount _in%"*% amount .
conditional_ ool rc
- out;"™: money__ outy" : money
retrieve_
cash®
amount
book_to_database
in%® :amount ___in%:amount secure
_ bd., bd .
check_ (outs™, ins™) : amount book 1o out;™: db_log__ out;” : db_log
iabd L socdl, i1 — =
account in,” : account _in3™: account deposit (oute™, in) : account database
(amount > 400) .
retrieve_cash
in :amount __in°2 amount "
conditional_ crc2 rc
- out;"*> money_ outy” : money
retrieve_
cash?2
amount
book_to_database
in™ : amount in%2: amount secure
— sbd. bd .
check_ (out™®2, in™) : amount book 1o out™: db_log_ out;,” : db_log
iabd L iacd2, i+ 2 —- =
account iny” : account __in3®*: account deposit (oute®, in) : account database

Figure 3: Alternative process networks

correspond to the following signatures.

241
fet fcheck-deposit’ amount X account — (amount X account)

) 1
fct fcheck-deposit® . amount X account — (ack X amount X account) (1)

Process type conditional_retrieve_cash occurs in two variants with the following functionalities.

fet fconditional_retrieve_cashl . amount ; (money)

o) 2
fet fcondztwnal_retmeve_cash2 . amount X ack — (money) ()

4.1 Uniting alternative process networks to their superset

The alternative process networks of our example differ merely in omitting a single data flow.
Otherwise, they are of identical structure and meaning. Alternative process networks which are
similar in this sense may be united to a single process network, as illustrated in Figure 4. We achieve
this by combining alternative process types to a single new process type which unites the previous
alternatives. Using these uniting process types, the uniting process network may be defined.

retrieve_cash

in’® : amount in{' : amount

conditional_
retrieve_
cash

cre .

out: money__ out{ : money

amount

book_to_database

in® : amount in®® : amount

secure_
book_to_
account database

check_ out™: db_log_ out? : db_log

(out® , inS™) : amount

inbd +cd -
: n : it .
account in,” : account in” : account depos (out? , in):

Figure 4: Uniting alternative process networks to their superset

Note that uniting process variants into their superset does not add any new syntactic concepts.
Thus, we can model this kind of process union without adding additional aspects to our description
technique introduced in section 2.

Here, alternative process types are combined to form a single process type, whose input and output
is made up of the union of all inputs and outputs of the different alternatives. In this union, those
ports of different process types which correspond in their meaning are identified and united to a

single port in the new process. Thus, the activity of uniting ports is not carried out merely on the
syntactical level. Rather, it requires a systematic analysis of the meaning and usage of the separate
ports.

The different alternatives of process execution do not show in the graphical representation of the
uniting process in Figure 4. However, in the computation scheme of the glass box view as well as
in the associated functions on the level of semantics, these variants are reflected as different cases
in decision statements.

In the uniting process network, the different alternatives are encapsulated within the process types
conditional retrieve_cash and check_deposit. The functions corresponding to these process types
are of the following signatures.

fet feheck-deposit amount X account — (ack X amount X account)

fct fconditional_retrie'ue_cash: amount X ack — (money)
In these functions, the different alternatives are incorporated as decisions. For the uniting process
types, the associated function may be expressed with respect to the functions of finer granularity.

S CTC

conditional _retrieve_cash (;,,crc _
f (in{"¢,ing"™¢) =

fconditional_retrieve_cash1(in?rc) iff in?rc < 400
- fconditional_retrieve_cash2 (ini:rc’ Z'ngrc) iff ini:rc > 400
fcheck_deposit(infd’ inCd) —
O’U,Ifgd _ 1ch,eclc_deposit1 (inid, and) A
= { outsd = peheck-deposit’ iped jpedy i ipod < 400
Jt'cfuzclc_deposit2 (Zni:d’ and) i Zni:d > 400

For input parameters of sort amount assigned to port in{"” and of sort account assigned to port

ing™, the functions that are associated with the processes in our example are defined as follows.

fref(ref(withdraw_money))1.1 (X

anlum, Z’I’Lg}m) — (flconditional_retrieve_cashl (,Ln'llum)’

flsecure_book_to_database (fZChCCk—dCPOSitl (Zniﬂm, Zn2wm),
gheck_depositl (anlym, m’g"m)))
fref(ref(withdraw_money))2'2 (Zn111)m, Zn2wm) — (flconditional_retrieve_cash2 (Zniﬂm, IChCCk—dCPOSit2 (Zniﬂm, Zn2wm)),
flsecure_book_to_database (fZChCCk—dCPOSitZ (Zniﬂm, Zn2wm),

gheck _deposit? (anlym : mé"m)))

For the uniting superset (confer to Figure 4) of the similar process networks, we get the following
function.

ref(ref(withdraw_-mone WM g WM conditional _retrieve_cash ;. wm gcheck_deposit . wm : wm
f fref(y))(”h ying™) = (ff (in{™, f1 (in{™,ing™)),

secure_book _to_database (gcheck_deposit (. wm : wm
fi (f2 (in{™, iny™),

gheck_deposit (,anlum, 'LTLme)))

When the decision statements by which the alternative functions are united do not partition the
possible combinations of parameter values into disjunct sets, the uniting process type turns to
be nondeterministic. In this case, as previously pointed out in section 3.1, we associate a set of
functions with the uniting process type. Each of these functions covers all possible combinations of
parameter values, where in those cases of more than one possible behavior, each function restricts
itself to a single behavior possibility. On the other hand, each of the behavioral possibilities must
be covered by at least one of the functions. For each instance of an execution of a nondeterministic

process instance, one function of the corresponding set of functions is selected in a nondeterministic
way, and then evaluated. Altogether, the set of associated function models exactly the behavior of
the nondeterminstic process type.

This decomposition of nondeterministic behavior into a set of functions is illustrated by the following
example.

Let f,, f,f‘ and fPB be functions over a set v of typed variables. Furthermore, let B be the set of
possible value combinations over this set of variables v. In addition, let A C B and B C B be
subsets of the set of possible value combinations. Also, AU B = B and AB := AN B # () holds.
Finally, let B(v) € B be one specific combination of values assigned to the set of variables v.

The process behavior is modeled by f/ if B(v) € A holds, and by £ if 3(v) € B holds.

As assumption AN B # () holds, this behavior is nondeterministic. For resolving this nondetermin-
ism, we describe this behavior in terms of a set of functions f, as follows.

A v B iff B(v) € B\AB
fo={f", 17}, where
s fA iff B(v) € A\AB
v T \fB iff B(v)eB

4.2 Encapsulating alternative processes by switches

Different process networks may be congruent in certain subparts, but may differ to a higher extent
in other areas. For example, process networks which start identically may continue differently
regarding structure and content, in the case that depending on the evaluation of parameter values
at a certain point, different possible subsequent process subnetworks may be pursued. In our
example in Figure 3, depending on the variable assignments, different variants of check_deposit are
executed, each of which is succeeded by a different process network.

When alternative process networks differ greatly in their input/output functionality in some areas,
it is suitable to keep them as process variants rather than uniting them to their superset. These
process variants may be encapsulated by input and/or output switches.

4.2.1 Output Switch

Process types which coincide in their meaning and their input functionality, but which differ in
their output functionality, may be united into an output switch.

in$™: amount out®™: amount

check_
deposit? |outs™:account

sacdr
N1 “amount

ing™:account

outs®®: ack
check_ outs™: amount

deposit2 |out:®:account

Figure 5: Similar process types with differing output functionality

As an example, Figure 5 illustrates similar process types with identical input functionality but
differing output functionality, as described in equation 1. We unite these alternative process types
into an output switch which is shown in Figure 6.

Note that the syntax of the glass box description of switch process types is identical to that of
regular process types.

10

outs®; amount

‘1-%
in%®S: amount cl |outs™: account

check outs®S: ack

.S
deposit c2 | outs®: amount
| oute®: account_

in$®S: account

cl= in™ <400
c2 = in®™ > 400

Figure 6: Uniting alternative process types to an output switch

When the output switch is integrated within a process network, the process network splits into
different process networks succeeding the output switch.

The function associated with an output switch is of the same input functionality as each of the
functions of the original alternative process types. However, its output functionality consists of the
cartesian product of output functionalities of the orignial functions. Thus

i+S
fct feheck-deposit amount X account — (amount X account X ack X amount X account)

holds for our example.

Then, function f checkdeposit® may be expressed using the original alternative functions as follows.

check _deposit*

(out) = (in a5y A
outy = Ch“k ~deposit! (z m2 S) iff in$?® < 400
check_deposit® (;,cdS ;, cdS\ _ 2
f (z'n,1 ,1N5) = out3 _ check _deposit (’L an S) A
outy = check _deposit? (Z zn2 S) A
2 .
Louts = gheCk ~deposit™ (ip, 45y iff in§% > 400

According to this definition, we assign the results of the corresponding subfunction to those output
ports that correspond to the fulfilled decision case. Output ports of decision cases that do not
evaluate to true have empty output as value, so that subsequent functions will not be triggered for
execution. Thus, when processes and functions are linked to form a network, only those branches
of the process network are executed which correspond to decision cases that evaluate to true.

In our example, the decision statement provides for disjunct cases in evaluation of variable assign-
ments. However, if cases should overlap, the resulting nondeterministic behavior is resolved by
splitting it into an equivalent set of functions, as described in section 4.1.

In the following section, we introduce input switches as an analogon to the output switches we just
presented.

4.2.2 Input Switch

Process types that correspond in their meaning and in their output functionality, but which differ
in their input functionality may be united to form an input switch.

___in§"™ amount | conditional_ o et
remeve_

cashl

money

in§*2 amount

conditional _
retrieve_ o2

ing°2 acc_id, cash? outy™™: money

Figure 7: Similar process types with differing input functionality

Figure 7 illustrates an example of similar process types which coincide in their output functionality
but differ in their input functionality, as described in equation 2.

11

We introduce the supplementary function zor(.,...,.) for uniting equally typed channels. If only
one of the input channels of zor holds a defined value, this value is output on the outgoing channel.
Whenever more than one input channel is assigned with a defined value, zor nondeterministically
selects one channel whose value ist output as result.

Function zor can easily be extended to tuples of input channels. Channel tuples with equal type
tuples are united to a single output tuple of corresponding tuple type. The functions output consists
of the values of the input tuple that is assigned with defined values. If more than one input tuple
is assigned with defined values, zor nondeterministically selects one of these channel tupels and
outputs the corresponding values.

We unite our alternative process types of Figure 7 by introducing an input switch, as illustrated in
Figure 8.

eres
in{™ amount -
LLL B Ll AL LI
d1 | conditional_ cres

- ores . Lout; = money _
in; % amount _—— retrieve_ =

ing°S account | d2 cashS

dl = am1 < 400
d2 = am2 > 400

Figure 8: Uniting alternative process types by an input switch

Note that again, the syntax of the glass box description of switch process types is identical to that
of regular process types.

An input switch that is integrated in a process network unites different preceding process networks
to a single succeeding process network.

The function that is associated with the input switch is of the same output functionality as each
of the functions corresponding to the original process types. However, its input functionality is the
cartesian product of input functionalities of the original functions. Thus

. ; s
fct foonditional_retrieve_cash™ . o ount x amount x account — (money)

holds.

. 4 ; S
Function feonditionalretrieve_cash® yay he expressed in terms of the original alternative functions as

follows.
conditional_retrieve_cash (;,,crc ;.,crc ;,crcy _
f (an y 1Ny 7, Ny) -
St N 1,. . . .
B fcond%tz-onal_retr7je'ue_cash2 (,Lnirc) iff Zni:rc S 400 A anre S 400
fcondztzonal_retrzeve_cash (ingrc’ak) iff ini:rc > 400 A ingre > 400

When the different functions do not define disjunctive cases of parameter assignments, we split up
the resulting nondeterministic behavior of the input switch into an equivalent set of deterministic

functions.
e in{" : amount
in™® : amount i
* d1 | conditional_ out™™ : money
s Crc -
in3°:amount —— retrieve
amount ——={ : e - e
—l‘ in® : amount
. & sbtd,
cl [in$" : account xor }iNi_- amount

- secure
in$: amount check_ inc - ack book to out® db_log
depositS c2 | ing® :amount -
account 4"1?:“& ’ inf : account database
cl=am < 400 d1l = aml < 400
c2 = am > 400 d2 = am2 > 400

Figure 9: Process network with input and output switch

Figure 9 shows the second refinement level of our example process withdraw_money using input
and output switches. On the level of semantics, this process network corresponds to the following

12

function definition.

fref(ref(withdraw_money))s (Zn'zlum, Z’I’Lg}m) —

— (flconditional_retrieve_cash5 (

s wm S wm check_deposits S wm o wm
LIy g (int"™, iny™)),

check_deposit® (
1

secure_book_to_database check_deposit® - wm : wm
f 4 (in{™,iny™)),

(wor(ing™, ingm),

:L‘O’I“(2check_uleposits (”quuma an)m)’ gheck_deposits (”quuma an)m)))

Process types with similar meaning but differing input and output functionality may be united into
an [O-switch which combines input and output switch into a single uniting process type.

5 Conclusions and outlook

We presented a semantically well founded description technique for modeling typical system be-
havior in a way that is independant from organizational or geographical boundaries. Furthermore,
we provided a refinement mechanism which supports behavior modeling across different levels of
abstraction. Our modeling technique documents causal dependencies among process execution
that are due to the communication of messages and events between processes, without introducing
any additional artificial sequentialization. Thus we allow for a maximum of parallelism in process
execution that conforms with the required causality of communication.

So far, we have provided a formally founded description technique for exemplaric system behavior.
In a next step, we will move from a set of single process runs towards processes instances that
are executed more than once within a single system run. Thus we need a notion of process state
or memory, and consequently adapt our semantics to stream processing functions that work on
histories of input and ouput messages (see, for example, [Kah74] and [Bro82]).

Finally, when assigning certain aspects of system behavior to the respective system modules for
execution in later stages of the system development process, we leave the cross functional, exem-
plaric view of business process modeling and turn to modeling the complete behavior of single
system components or objects. At this stage, we employ automata or state machines ([GKRB96]
for modeling component behavior.

The methodic and semantic integration of these approaches is subject of ongoing research.

Acknowledgements

I thank Wolfgang Schwerin, Manfred Broy and Bernhard Rumpe for many fruitful discussions.

13

References

[BFG+93]

[BJRIT7]
[B0o094]

[Bro82]

[Bro92]

[Bro93]

[Dav93]
[DeMT79]

[FS91]

[GKRBY6]

[Hoa85]

[IT96]
[Kah74]

[Sie95]

M. Broy, C. Facchi, R. Grosu, R. Hettler, H. Humann, D. Nazareth, F. Regensburger,
O. Slotosch and K. Stolen. The requirement and design specification language SPEC-
TRUM — An informal introduction, Part II. Technical Report TUM-19312, Technische
Universitat Minchen, Institut fir Informatik, Munchen, May 1993.

G. Booch, 1. Jacobson and J. Rumbaugh. Unified Method Language — Notation Guide.
Rational Software Corporation, Santa Clara, CA., 1.1 ¢ edition, July 1997.

G. Booch. Object-Oriented Analysis and Design with Applications. Benjamin Cum-
mings, 1994.

M. Broy. A Theory for Nondeterminism, Parallelism, Communication and Concur-
rency. Technical report, Habilitationsschrift, Fakultat fiir Mathematik und Informatik,
Technische Universita Miinchen, 1982.

M. Broy. Informatik — Eine grundlegende Einfihrung, Teil 1: Problemnahe Program-
mierung, volume 1. Springer-Verlag, Berlin, 1992.

M. Broy. (Inter-)Action Refinement: The Easy Way. In F.L. Bauer, M. Broy, E.W.
Dijkstra, D. Gries and C.A.R Hoare, editors, Program Design Calculi, NATO ASI Series
F: Computer and System Sciences, Vol. 118, pages 121-158. Springer-Verlag, 1993.

A.M. Davis. Software Requirements — Objects, Functions, and States. Prentice-Hall
International, Inc., Englewood Cliffs, New Jersey, 1993.

T. DeMarco. Structured Analysis and System Specification. Prentice-Hall International,
Inc., Englewood Cliffs, New Jersey, 1979.

0.K. Ferstl and E.J. Sinz. Ein Vorgehensmodell zur Objektmodellierung betrieblicher
Informationssysteme im Semantischen Objektmodell (SOM). In Bamberger Beitrdge
zur Wirtschaftsinformatik, Nr. 5. Universitat Bamberg, July 1991.

R. Grosu, C. Klein, B. Rumpe and M. Broy. State Transition Diagrams. Technical Re-
port TUM-19630, Technische Universitat Minchen, Institut fiir Informatik, Miinchen,
June 1996.

C.A.R. Hoare. Communicating Sequential Processes. Series in Computer Science. Pren-
tice Hall International, Inc., Englewood Cliffs, New Jersey, 1985.

ITU-T. Z.120 — Message Sequence Chart (MSC). ITU-T, Geneva, 1996.

G. Kahn. The Semantics of a Simple Language for Parallel Programming. In Informa-
tion Processing, IFIP’7j. North-Holland, 1974.

Siemens Nixdorf Informationssysteme AG, Miinchen. GRAPES V3 - Sprachbeschrei-
bung, March 1995.

14

