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Abstract. The validation and verification of software is typically a
costly part of the development. A possibility to reduce costs is to con-
centrate these activities on the fault-prone components of the system.
A classification approach is proposed that identifies these components
based on detailed UML models. For this mainly existing code metrics
are tailored to be applicable to models and are combined to a suite. Two
industrial case studies confirm the ability of the approach to identify
fault-prone components.

1 Introduction

The whole area of testing and quality assurance constitutes a significant part of
the total development costs for software, often up to 50% [1]. Especially formal
verification is frequently perceived as rather costly. Therefore there is a possi-
bility for optimizing costs by concentrating on the fault-prone components and
thereby exploiting the existing resources as efficiently as possible. Detailed de-
sign models offer the possibility to analyse the system early in the development
life-cycle. One of the possibilities is to measure the complexity of the models to
predict fault-proneness assuming that a high complexity leads to a high number
of defects.

The complexity of software code has been studied to a large extent. It is often
stated that complexity is related to and a good indicator for the fault-proneness
of software [2—4]. There are two different approaches to the identification of
fault-prone components. In the estimative approach models are used to predict
the number of faults that are contained in each component. The classification
approach categorizes components into fault-prone classes, often simply low-fault
and high-fault. We use the latter approach in the following because it is more
suitable for the model metrics.

Although the traditional complexity metrics are not directly applicable to
design models because of different means of structuring and abstractions, there
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are already a number of approaches that propose design metrics, e.g. [5-8]. Most
of the metrics in [8] were found to be good estimators of fault-prone classes in [9]
and are used in our approach as well. However, they concentrate mainly on the
structure of the designs. Since the system structure is not sufficient as a source
for the complexity of its components, which largely depends on their behavior,
we will also propose a metric for behavioral models.

Contribution. This paper contains an adaption of complexity metrics to measure
design complexity of UML 2.0 models. Based on these metrics an approach is
proposed for deriving the fault-proneness of classes. Furthermore the metrics
and the approach are validated by two industrial case studies.

Outline. In Sec. 2 complexity metrics for models built with a subset of UML 2.0
are defined and an approach for using the metrics to derive fault- and failure-
prone components is explained. Two case studies are provided in Sec. 3. Finally,
related work and conclusions are discussed in Sec. 4 and Sec. 5, respectively.

2 Analyzing Fault-Proneness

This section describes the possibilities to identify fault-prone components based
on models built with UML 2.0 [10]. We introduce a design complexity metrics
suite for a subset of model elements of the UML 2.0 and explain how to identify
fault-prone components.

The basis of our metrics suite forms the suite from [8] for object-oriented code
and the cyclomatic metric from [11]. In using a suite of metrics we follow [12, 13]
stating that a single measure is usually inappropriate to measure complexity.

In [14] the correlation of metrics of design specifications and code metrics
was analyzed. One of the main results was that the code metrics such as the
cyclomatic complexity are strongly dependent on the level of refinement of the
specification, i.e. the metric has a lower value the more abstract the specification
is. Models of software can be based on various different abstractions, such as
functional or temporal abstractions [15]. Depending on the abstractions chosen
for the model, various aspects may be omitted, which may have an effect on
the metrics. Therefore, it is prudent to consider a suite of metrics rather than
a single metric when measuring design complexity to assess fault-proneness of
system components.

Development Process. The metric suite described below is generally appli-
cable in all kinds of development processes. It does not need specific phases or
sequences of phases to work. However, we need detailed design models of the
software to which we apply the metrics. This is most rewarding in the early
phases as the models then can serve various purposes.

We adjust metrics to parts of UML 2.0 based on the design approach taken
in AutoFocus [16], ROOM [17], or UML-RT [18], respectively. This means that
we model the architecture of the software with structured classes (called actors



in ROOM, capsules in UML-RT) that are connected by ports and connectors
and which have associated state machines that describe their behavior.

The metrics defined in this section are applicable to components as well as
classes. However, we will concentrate on structured classes following the usage
of classes in ROOM. The particular usage should nevertheless be determined by
the actual development process.

2.1 Measures of the Static Structure

We start introducing the new measures with the ones that analyze the static
structure of models. These are important because the interrelations and depen-
dencies among model elements contribute significantly to their complexity.

Structured Classes. The concept of structured classes introduces composite
structures that represent a composition of run-time instances collaborating over
communication links. This allows UML classes to have an internal structure
consisting of other classes that are bound by connectors. Furthermore ports are
used as a defined entry point to a class. A port can group various interfaces that
are provided or required. A connection between two classes through ports can
also be denoted by a connector. The parts of a class work together to achieve its
behavior. A state machine can also be defined to describe behavior additional
to the behavior provided by the parts.

We start with three metrics, Number of Parts, Number of Required Interfaces,
and Number of Provided Interfaces, which concern structural aspects of a system
model. The metrics consider composite structure diagrams of single classes with
their parts, interfaces, connectors, and possibly state machines. A corresponding
example is given in Fig. 1.

Number of Parts (NOP). The number of parts of a structured class contributes
obviously to its structural complexity. The more parts it has, the more coor-
dination is necessary and the more dependencies there are, all of which may
contribute to a fault. Therefore, we define NOP as the number of direct parts
C) of a class.

Number of Required Interfaces (NRI). This metric is (together with the NPI
metric below) a substitute for the old Coupling Between Objects (CBO) that
was criticized in [19] in that it does not represent the concept of coupling ap-
propriately. It reduces ambiguity by giving a clear direction of the coupling. We
use the required interfaces of a class to represent the usage of other classes. This
is another increase of complexity which may as well lead to a fault, for example
if the interfaces are not correctly defined. Therefore we count the number of
required interfaces I,. for this metric. Coupling metric as predictors of run-time
failures were investigated in [20]. It shows that coupling metrics are suitable
predictors of failures.



Number of Provided Interfaces (NPI). Very similar but not as important as NRI
is the number of provided interfaces I,,. This is similarly a structural complexity
measure that expresses the usage of a class by other entities in the system.
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Fig. 1. An example structured class with three parts and the corresponding metrics.

Example. The example in Figure 1 shows the composite structure diagram
of a class with three ports, two required and two provided interfaces. It has
three parts which have in turn ports, interfaces and connectors. However, these
connecting elements are not counted in the metrics for the class itself because
they are counted by the metrics for the parts, and these can later be summed
up to consider the complexity of a class including its parts.

2.2 Measure of Behavior

We proceed with a complexity metric for behavioral models because the behavior
determines the complexity of a component to a large extent.

State Machines. State machines are used to describe the behavior of classes of
a system. They describe the actions and state changes based on a partitioning of
the state space of the class. Therefore the associated state machine is also an indi-
cator of the complexity of a class and hence its fault-proneness. State machines
consist of states and transitions where states can be hierarchical. Transitions
carry event triggers, guard conditions, and actions.

We use cyclomatic complexity [11] to measure the complexity of behavioral
models represented as state machines because it fits most naturally to these
models as well as to code. This makes the lifting of the concepts from code to
model straightforward.

To find the cyclomatic complexity of a state machine we build a control flow
graph similar to the one for a program in [11]. This is a digraph that represents
the flow of control in a piece of software. For source code, a vertex is added for
each statement in the program and arcs if there is a change in control, e.g. an if-
or while-statement. This can be adjusted to state machines by considering the



code implementation. The code transformation that we use as a basis for the
metrics can be found in [17]. However, different implementation strategies could
be used [21].

Example. An example of a state machine and its control flow graph is depicted
in Fig. 2. At first we need an entry point as the first vertex. The second vertex
starts the loop over the automata because we need to loop until the final state is
reached or infinitely if there is no final state. The next vertices represent transi-
tions, atomic expressions! of guard conditions, and event triggers of transitions.
These vertices have two outgoing arcs each because of the two possibilities of the
control flow, i.e. an evaluation to true or false. Such a branching flow is always
joined in an additional vertex. The last vertex goes back to the loop vertex from
the start and the loop vertex has an additional arc to one vertex at the end that
represents the end of the loop. This vertex finally has an arc to the last vertex,
the exit point.

If we have such a graph we can calculate the cyclomatic complexity using
the formula v(G) = e — n + 2, where v is the complexity, G the control graph,
e the number of arcs, and n the number of vertices (nodes). There is also an
alternative formula, v(G) = p+1, which can also be used, where p is the number
of binary predicate nodes. Predicate nodes are vertices where the flow of control
branches.

Hierarchical states in state machines are not incorporated in the metric.
Therefore the state machine must be transformed into an equivalent state ma-
chine with simple states. This appears to be preferable to handling hierarchy
separately because we are not looking at understandability and we do not have
to deal with hierarchy crossing transitions. Furthermore internal transitions are
counted equally to normal transitions. Pseudo states are not counted themselves,
but their triggers and guard conditions. Usage of the InState construct in guards
is not considered.

Cyclomatic Complexity of State machine (CCS). Having explained the concepts
based on the example flow graph above, the metric can be calculated directly
from the state machine with a simplified complexity calculation. We count the
atomic expressions and event triggers for each transition. Furthermore we need
to add 1 for each transition because we have the implicit condition that the
corresponding source state is active. This results in the formula

CCS = |T| +|E| + |Ag| + 2. (1)

where T is the multi-set of transitions, E is the multi-set of event triggers, and
Ag is the multi-set of atomic expressions in the guard conditions. This formula
yields exactly the same results as the longer version above but has the advantage
that it is easier to calculate.

1 A guard condition can consist of several boolean expressions that are connected
by conjunctions and disjunctions. An atomic expression is an expression only using
other logical operators such as equivalence. For a more thorough definition see [11].
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Fig. 2. (a) A simple state machine with one hierarchical state, event trigger, guard
conditions, and actions. (b) Its corresponding control flow graph. The black vertices
are predicate nodes. On the right the transitions for the respective part of the flowgraph
are noted.

For this metric we have to consider two abstraction layers. First, we transform
the state machine into its code representation? and second use the control flow
graph of the code representation to measure structural complexity. The first
“abstraction” is needed to establish the relationship to the corresponding code
complexity because it is a good indicator of the fault-proneness of a program. The
proposition is that the state machine reflects the major complexity attributes of
the code that implements it. The second abstraction to the control flow graph
was established in [11] and is needed for the determination of paths through the
program which reflect the complexity of the behavior.

2.3 Metrics Suite

In addition to the metrics which we defined above, we complete our metrics suite
by adding two existing metrics from [8] that can be adjusted to be applicable to
UML models. The metrics chosen are from the ones that were found to be good

2 Note that this is done only for measuring purposes; our approach also applies if
the actual implementation is not automatically generated from the UML model but
manually implemented.



indicators of fault-prone classes in [9]. We omit Response For a Class (RFC)
and Coupling Between Objects (CBO)? because they cannot be determined on
the model level. The two adapted metrics are described in the following. The
complete metrics suite can be found in Tab. 1.

Depth of Inheritance Tree (DIT). This is the maximum depth of the inheritance
graph T to a class c. This can be determined in any class diagram that includes
inheritance.

Number of Children (NOC). This is the number of direct descendants Cy in the
inheritance graph. This can again be counted in a class diagram.

Table 1. A summary of the metrics suite with its calculation

Name Abbr.|Calculation

Depth of Inheritance Tree DIT |maz(depth(T,c))
Number of Children NOC ||Cq|

Number of Parts NOP ||Cy|

Number of Required Interfaces NRI ||I|

Number of Provided Interfaces NPI ||I,]

Cyclomatic Complexity of State machine|CCS ||T'| + |E| + |Ag| + 2

We analyze whether our metrics are structural complexity measures by the
definition in [12]. The definition says that for a set D of documents with a pre-
order <p and the usual ordering <g on the real numbers R, a structural com-
plexity measure is an order preserving function m : (D, <p) — (R, <g). This
means that any structural complexity metric needs to be at least pre-ordered be-
cause this is necessary for comparing different documents. Each metric from the
suite fulfills this definition with respect to a suitable pre-order on the relevant
set of documents. The document set D under consideration is depending on the
metric: either a class diagram that shows inheritance and possibly interfaces, a
composite structure diagram showing parts and possibly interfaces, or a state
machine diagram. All the metrics use specific model elements in these diagrams
as a measure. Therefore there is a pre-order <p between the documents of each
type based on the metrics: We define dy <p dsy for two diagrams d;,ds in D if
dy has fewer of the model elements specific to the metric under consideration
than dy. The mapping function m maps a diagram to its metric, which is the
number of these elements. Hence m is order preserving and the metrics in the
suite qualify as structural complexity measures.

Fault Proneness. As mentioned before, complexity metrics are good predictors
for the reliability of components [2, 3]. Furthermore the experiments in [9] show

3 RFC counts all methods of a class and all methods recursively called by the methods.
CBO counts all references of a class to methods or fields of other classes.



that most metrics from [8] are good estimators of fault-proneness. We adopted
DIT and NOC from these metrics unchanged, therefore this relationship still
holds. The cyclomatic complexity is also a good indicator for reliability [2] and
this concept is used for CCS to be able to keep this relationship. The remaining
three metrics were modeled similarly to existing metrics. NOP resembles NOC,
NRI and NPI are similar to CBO. NOC and CBO are estimators for fault-
proneness, therefore it is expected that the new metrics behave accordingly.

The metrics suite is used to determine the most fault-prone classes in a
system. Different metrics are important for different components. Therefore one
cannot just take the sum over all metrics to find the most critical component.
We propose to use the metrics so that we compute the metric values for each
component and class and consider the ones that have the highest measures for
each single metric. This way we can for example determine the components with
complex behavior or coupling.

We suggest to use complezity levels Lo = {high, low}. We assign each com-
ponent such a complexity level by looking at the extreme values in the metrics
results. Each component that exhibits a high value in at least one of the metrics
is considered of having the complexity level high, all other components have the
level low. It depends on the actual distribution of values to determine what is
to be considered a high value. These complexity levels show the high-fault and
low-fault components.

Failure Proneness. The following constitutes an extension to the analysis of
fault proneness towards failure proneness. The fault-proneness of a component
does not directly imply low reliability because a high number of faults does not
mean that there is a high number of failures [22]. However, a direct reliability
measurement is in general not possible on the model level. Nevertheless, we can
get close by analysing the failure-proneness of a component, i.e. the probability
that a fault leads to a failure that occurs during software execution.

It is not possible to express the probability of failures with exact figures based
on the design models. We propose therefore to use more coarse-grained failure
levels, e.g. Lp = {high, medium, low}, where L is the set of failure levels. This
allows an abstract assessment of the failure probability. It is still not reliability
as generally defined but the best estimate that we can get in early phases.

To determine the failure level of a component we use the complexity lev-
els from above. Having assigned these complexity levels to the components, we
know which components are highly fault-prone. The operational profile [23] is
a description of the usage of the system, showing which functions are mostly
used. We use this information to assign usage levels Ly to the components. This
can be of various granularity. An example would be Ly = {high, medium, low}.
When we know the usage of each component we can analyze the probability that
the faults in the component lead to a failure.

The combination of complexity level and usage level leads us to the failure
level Lp of the component. It expresses the probability that the component fails



during software execution. We describe the mapping of the complexity level and
usage level to the failure level with the function fp:

fo=Lc x Ly — Lp,where Lp = Ly U {low} (2)

What the function does is simply to map all components with a high com-
plexity level to its usage level and all component with a low complexity level to
low. However, this is only one possibility how fp can look like.

y if x = high
fo(z,y) = { (3)
This means that a component with high fault-proneness has a failure probabil-
ity that depends on its usage and a component with low fault-proneness has
generally a low failure probability.

Having these failure levels for each component we can use that information
to guide the verification efforts in the project, e.g. assign the most amount of
inspection and testing on the components with a high failure level. Parts of
critical systems such as an exception handler still need thorough testing although
its failure level might be low. However, this is not part of this work.

low otherwise

3 Case Studies

This section presents two industrial case studies that use the classification ap-
proach based on the metrics suite and contains a discussion of the results and
observations. Both case studies do not analyze the DIT and NOC metrics be-
cause the models do not contain inheritance.

3.1 Automatic Collision Notification

The first case study we used to validate our proposed fault-proneness analysis is
an automatic collision notification system as used in cars to provide automatic
emergency calls. First, the system is described and designed using UML, then
we analyze the model and present the results.

Description. The case study was done in cooperation with a car manufacturer.
The problem to be solved is that many accidents of automobiles only involve a
single vehicle. Therefore it is possible that no or only a delayed emergency call is
made. The chances for successful help for the casualties are significantly higher
if an accurate call is made quickly. This has lead to the development of so called
Automatic Collision Notification (ACN) systems, sometimes also called mayday
systems. They automatically notify an emergency call response center when a
crash occurs. In addition, manual notification using the location data from a
GPS device can be made. We used the public specification from the Enterprise
program [24,25] as a basis for the design model. Details of the implementation
technology are not available. In this case study, we concentrate on the built-in
device of the car and ignore the obviously necessary infrastructure such as the
call center.



Device Design. Following [24] we call the built-in device MaydayDevice and
divide it into five components. The architecture is illustrated in Fig. 3 using a
composite structure diagram of the device.

class MaydayDevice J
O>>D<—> ButtonBox [ {] AutomaticNotification %]—D—C

Fig. 3. The composite structure diagram of the mayday device.

The device is a processing unit that is built into the vehicle and has the
ability to communicate with an emergency call center using a mobile telephone
connection and retrieving position data using a GPS device. The components
that constitute the mayday device are:

— ProcessorModule: This is the central component of the device. It controls
the other components, retrieves data from them and stores it if necessary.

— AutomaticNotification: This component is responsible for notifying a serious
crash to the processor module. It gets notified itself if an airbag is activated.

— LocationModule: The processor module request the current position data
from the location module that gathers the data from a GPS device.

— CommunicationsModule: The communications module is called from the pro-
cessor module to send the location information to an emergency call center.
It uses a mobile communications device and is responsible for automatic
retry if a connection fails.

— ButtonBozx: This is finally the user interface that can be used to manually
initiate an emergency call. It also controls a display that provides feedback
to the user.

Each of the components of the mayday device has an associated state machine
to describe its behavior. We do not show all of the state machines because of
space reasons but explain the two most interesting in more detail. This is, firstly,
the state machine of the ProcessorModule called Processor in Fig. 4. It has three
control states: idle, retrieving, and calling. The idle state is also the initial state.
On request of an emergency call, either by startCall from the ButtonBozx or
notify from the AutomaticNotification, it changes to the retrieving state. This
means that it waits for the GPS data. Having received this data, the state



changes to calling because the CommunicationsModule is invoked to make the
call. In case of success, it returns to the idle state and lights the green LED on
the ButtonBox. Furthermore, the state machine can handle cancel requests and
making a test call.

sm Processor

cancelCall() / lightLED(red)

startCall() / getGps()

| retrieving

notify() / acknowledge(), getGps()

testCall() / makeCall(callData)

success() / lightLED(green) %psData() / location=gpsData,

. makeCall(callData)
calling

O

cancelCall() / cancel()

failure() / lightLED(red)

Fig. 4. The state machine diagram of the ProcessorModule.

The second state machine is Communications in Fig. 5, the behavior specifi-
cation of CommunicationsModule. One of the main complicating factors here is
the handling of four automatic retries until a failure is reported. The state ma-
chine starts in an idle state and changes to the calling state after the invocation
of makeCall. The offHook signal is sent to the mobile communications device.
Inside the calling state, we start in the state opening line. If the line is free, the
dialing state is reached by dialing the emergency number. After the connected
signal is received, the state is changed to sending data and the emergency data
is sent. After all data is sent, the finished flag is set which leads to the data sent
state after the onHook signal was sent to the mobile. After the mobile sends the
done signal, the state machine reports success and returns to the idle state. In
case of problems, the state is changed to opening line and the retries counter is
incremented. After four retries the guard [retries >= 5| evaluates to true and
the call fails. It is also always possible to cancel the call which leads to a failure
signal as well.

Results. The components of MaydayDevice are further analyzed in the follow-
ing. At first we use our metrics suite from Sec. 2 to gather data about the model.
The results can be found in Tab. 2. It shows that we have no inheritance in the
current abstraction level of our model and also that the considered classes have
no parts apart from MaydayDevice itself. Therefore the metrics regarding these
aspects are not helpful for this analysis.
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Fig. 5. The state machine diagram of the CommunicationsModule.

Table 2. The results of the metrics suite for the components of MaydayDevice.

Class DIT|NOC|NOP|NRI|NPI|CCS
MaydayDevice 0 0 5 4 2 0
ProcessorModule 0 0 0 4 4| 16
AutomaticNotification 0 0 0 2 1 4
LocationModule 0 0 0 1 2 4
CommunicationsModule 0 0 0 2 2 32
ButtonBox 0 0 0 2 2 8

More interesting are the metrics for the provided and required interfaces and
their associated state machines. The class with the highest values for NRI and
NPI is ProcessorModule. This shows that it has a high coupling and is therefore
fault-prone. The same module has a high value for CCS but Communications-
Module has a higher one and is also fault-prone.

In [25] there are detailed descriptions of acceptance and performance tests
with the developed system. The system was tested by 14 volunteers. The usage
of the system in the tests was mainly to provoke an emergency call by pressing
the button on the button box.

The documentation in [25] shows that the main failures that occurred were
failures in connecting to the call center (even when cellular strength was good),
no voice connect to the call center, inability to clear the system after usage, and
failures of the cancel function. These main failures can be attributed to the com-
ponent ProcessorModule that is responsible for controlling the other components
and CommunicationsModule that is responsible for the wireless communication.



Therefore our analysis identified the correct components. The types of the cor-
responding faults of the failures are not available.

3.2 MOST NetworkMaster

We further validated our approach on the basis of the project results of an
evaluation of model-based testing [26]. A network controller of an infotainment
bus in the automotive domain, the MOST g NetworkMaster [27], was modeled
with the case tool AutoFocus and test cases were generated from that model and
compared with traditional tests. An implementation in C running on a standard
PC was tested. We use all found faults from all test suites in the following. The
AutoFocus notation is quite similar to UML 2.0 which allows straight-forward
application of the metrics defined earlier.

Device Design. The composite structure diagram of the network master is
shown in Figure 6. It contains two components Divide and Merge that are only
responsible for the correct distribution of messages. The MonitoringMgr checks
the status of devices in the network but has no behavior in the model, i.e. was
functionally abstracted. The RegistryMgr is the main component. All devices
need to register with it on startup and it manages this register. Finally, the
RequestMgr answers requests about the addresses of other devices.

class NetworkMaster J

)—D—»fﬁ Divide

ol ‘

}

éﬁ MonitoringMgr

ol

ol
LT

1T

RegistryMgr
[—-=_71 RequestMgr

ol

LT I L
A—eﬁ Merge

Fig. 6. The composite structure diagram of the MOST network master.

01

We omit further parts of the design, especially the associated state machines,
because of space and confidentiality reasons. The corresponding metrics are sum-
marized in Table 3.



Table 3. The results of the metrics suite for the NetworkMaster.

Class DIT|NOC|NOP|NRI|NPI|CCS
NetworkMaster| 0 0 5 4| 5 0
Divide 0 0 o 1} 3| 11
Merge 0 0 o 3 1 8
MonitoringMgr| 0 0 o 2 1 0
RequestMgr 0 0 o 2 1| 14
RegistryMgr 0 0 o] 4] 7| 197

Results. The data from the table shows that the RegistryMgr has the high-
est complexity in most of the metrics. Therefore we classify it as being highly
fault-prone. As described in [26], several test suites were executed against an
implementation of the network master. Some of which were developed manually,
other based on existing Message Sequence Charts, and the remaining ones were
automatically derived from an AutoFocus model. There were 24 faults identified
by the test activities of which 13 are programming faults, 9 requirements defects,
and 2 model faults. Of these faults 21 can be attributed to the RegistryMgr and
3 to the RequestMgr. There were no faults revealed in the other components.
Hence, the high fault-proneness of the RegistryMgr did indeed result in a high
number of faults revealed during testing.

3.3 Discussion

The two case studies confirmed our approach for identifying fault-prone com-
ponents using model metrics. In both cases the suite ranked the components
as high-fault that had code implementations which actually contained the most
faults. Both models were developed completely independent of the implemen-
tations. Hence, model faults that lead to implementation faults cannot have an
influence. Unfortunately, inheritance was not used in the studies. Therefore the
validity of these metrics remains to be shown. It holds for the whole approach
that the the external validity of the results of the case studies is limited as the
small sample size does not allow a thorough statistical analysis.

Correlation of Metrics. A main problem of software metrics is that different
metrics are often not independent. We analyse our proposed metrics suite con-
cerning the correlation of the different metrics based on the data from the case
studies. The sample size is small therefore the validity is limited but may give
first indications.

We cannot analyse DIT and NOC because they were not used in the case
studies. Also it does not make sense to analyse NOP with only two non-null
data points. Therefore we concentrate on NRI, NPI, and CCS. The correlation
between NRI / CCS and NPI / CCS is low with a a correlation coefficient
r = —0.17 and r = —0, 13, respectively. Only the correlation between NRI and
NPT is more interesting. The correlation coefficient is 0.55 but the Chi-test and



F-test only yielded probabilities of 0.35 and 0.17, respectively, for both data rows
coming from the same population. Hence, we have a good indication that the
metrics of our suite are not interdependent.

Correlation of Metrics and Faults. As we use the classification approach
with our metrics, we cannot estimate numbers of faults and therefore a corre-
lation between estimated and actual faults is not possible. Also a correlation
analysis between the single metrics and the number of found faults is not helpful
because only the combined suite can provide a complete picture of the complex-
ity of the component. However, the statistical correlation between the metrics
and the number of faults is not as low as expected. For NRI the coefficient is
0.35, for NPI 0.58, and for CCS 0.53 but chi- and f-tests showed a very low
significance probably because of the small sample size.

Observations. By looking at the case studies it seems that the CCS metric has
the most influence on the fault-proneness. However, there are components that
do not have a state machine but their behavior is described by its parts and still
might contain several faults. It also can be rather trivial to see that a specific
component is fault-prone as in the case of the RegistryMgr of the NetworkMaster.
This component has such a large state machine that it is obvious that it has to
contain several faults. In larger models with a large number of components this
might not be that obvious. Finally, there is no evident influence of the application
type on the metrics visible from the case studies as both have components with
a rather small number of interfaces and parts and a few components with quite
large state machines.

4 Related work

There have been few approaches that consider reliability metrics on the model
level: In [7] an approach is proposed that includes a reliability model that is based
only on the static software architecture. A complexity metric that is in principle
applicable to models as well as to code is discussed in [5], but it also only involves
static structure as well. In [6] the cyclomatic complexity is suggested for most
aspects of a design metric but not further elaborated.

In et al. describe in [28] an automatic metrics counter for UML. They classify
their metrics into various categories including fault proneness. The metrics in
this category are WMC, NOC, and DIT. The latter two are the same as in our
approach. The calculation of WMC is given as the sum of the complexities of
the methods but no further explanation is given how this complexity should
be calculated from the model. State machines and structured classes are not
analysed.

A white paper from Douglass [29] contains numerous proposals of model
metrics for all types of UML models. Therefore this work has several metrics
that are not comparable to ours. Moreover, detailed explanations of the metrics



is not available for all of them. Our DIT metric is similar to the Class Inheritance
Depth (CID), and NOC is comparable to Number of Children (NC). The Class
Coupling (CC) aims at a similar target as the NRI and NPI metrics but does not
consider the interfaces but the associations. Finally, there is a complexity metric
for state machines called Douglass Cyclomatic Complexity (DCC) that is also
based on the metric from McCabe but handles nesting and and-states differently.
Also triggers and guards are ignored. The whole intention of DCC is different
to our CCS metric. Douglass considers more the aspect of the complexity in
terms of comprehensibility whereas we want to capture the inherent complexity
of the behavior of the component. Douglass gives rough guidelines for values
that indicate “good” models but does not relate the metrics to fault proneness.

Other approaches have been used for dependability analysis based on UML
models, although these do not consider complexity metrics: In [30] an approach
to automatic dependability analysis using UML is explained where automatic
transformations are defined for the generation of models to capture systems de-
pendability attributes such as reliability. The transformation concentrates on
structural UML views and aims to capture only the information relevant for de-
pendability. Critical parts can be selected to avoid explosion of the state space.
A method is presented in [31] in which design tools based on UML are aug-
mented with validation and analysis techniques that provide useful information
in the early phases of system design. Automatic transformations are defined for
the generation of models to capture system behavioral properties, dependability
and performance. There is a method for quantitative dependability analysis of
systems modeled using UML statechart diagrams in [32]. The UML models are
transformed to stochastic reward nets, which allows performance-related mea-
sures using available tools, while dependability analysis requires explicit model-
ing of erroneous states and faulty behavior.

5 Conclusions

We propose an approach to determine fault-prone components of a software
system in the design phase already by complexity analysis of the design models.
We use the concept of the cyclomatic complexity of code, lift it to the model
level and combine it with adjusted object-oriented metrics originally from [8] to a
metrics suite for UML 2.0. The metrics from [8] and [11] have undergone several
experimental validations, e.g. [2,9, 4, 3]. Because we used these metrics as a basis
for our metrics suite we believe that it is a good indicator for fault-proneness.
This was confirmed in two industrial case studies.

The metrics can also be used in conjunction with static analyses of the model
concerning reliability [33].

For future work, we plan further experimental work to validate the approach.
Furthermore, as soon as more data is available a discriminant analysis similar
to [34] will be used to get a more solid mathematical foundation for the classifi-
cation.
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