An Integrated Approach to Quality Modelling

Stefan Wagner and Florian Deissenboeck
Institut fiir Informatik
Technische Universitdt Miinchen
Boltzmannstr. 3, 85748 Garching b. Miinchen, Germany
{wagnerst,deissenb} @in.tum.de

Abstract

Software quality is described by various views using dif-
ferent attributes and models. All these types of software
quality have their own benefits and applications. However,
the isolated solutions do not allow an integrated view on
software quality. This renders a comprehensive analysis of
software difficult and causes overlaps and inconsistencies
in the models. Therefore, this paper proposes an integrated
approach to quality modelling. The approach is based on
the idea to use an explicit meta-model that provides the
means to develop a base quality model. This base model
contains the relevant relationships w.r.t. quality. Further-
more, so-called purpose models are derived by quantifying
from this basis in order to aid specific tasks in quality man-
agement. The approach is illustrated with a proven example
of a meta-model and derived quality model for maintain-
ability.

1. Introduction

In his influential article on product quality in different
domains, Garvin concluded that “Quality is a complex and
multifaceted concept” [S]. Accordingly, the software engi-
neering community produced a plethora of methods to deal
with the various quality facets (examples are given in the
next section). However, these contributions, though highly
valuable, are very specialised for specific facets and thereby
relatively isolated. We claim that the lack of a systematic
concept to integrate the existing quality approaches renders
a comprehensive analysis of software difficult and causes
overlaps as well as inconsistencies in definitions of quality.

We are well aware that there are good reasons to tackle
different quality issues with different methods and do not
aim at depriving the individual approaches of their power
by forcing them in a uniform framework. However, the
quality measures applied in particular contexts should be
coordinated by a systematic concept that enables us to rea-

son about the different quality aspects and their interdepen-
dencies. This is especially important for the ultimate goal
of a truly economically justified practice of quality engi-
neering. Only if the different quality measures adhere to a
generic quality concept, we will be able to compare them
and thereby to determine the economic costs and benefits of
specific quality measures (or a whole quality program) on a
quantitative scale. Such a concept is indispensable for dis-
cussing quality tradeoffs posed by conflicting quality goals
as they are frequently encountered for attributes like perfor-
mance and maintainability.

Problem. There is a rich set of models and techniques for
software product quality that support engineers in dealing
with a multitude of quality related issues. However, we still
lack an integrated approach that enables us to treat all these
equally important, but currently isolated quality aspects in
a uniform way.

Contribution. We present a classification that describes
the different dimensions of quality that are typically ad-
dressed by existing approaches (Sec. 3). Deriving from
this, we introduce a new, three-layered concept to inte-
grate the different approaches to quality in a uniform man-
ner (Sec. 4). This concept is based on cost factors and
a common meta-model that enables us to precisely de-
scribe generic quality characteristics in a so-called base
model. This base model can be extended with situation-
and application-specific purpose models. This approach al-
lows us to capture quality characteristics that are common
to multiple contexts while still being open to extensions
needed in specific situations. Thereby the quality model can
be customised to provide different views on quality, pursue
varying quality goals and support multiple quality assurance
techniques applied in the respective development phases.
This makes it possible to treat several quality aspects in
an uniform way and thereby enables us to identify incon-
sistencies and redundancies caused by the isolated methods

currently used. To illustrate our approach we present a ex-
emplary quality meta-model that we successfully applied in
different industrial and academical contexts (Sec. 5).

2. Quality views & models

This section gives an overview of the views on quality
and models that were developed to describe different facets
of quality.

2.1. Quality views

In [5] Garvin gave a definition of five different ap-
proaches (views) to product quality that also gained atten-
tion in the software engineering community [7]. He distin-
guishes

1. the transcendent view that defines quality as something
that can be recognised but not defined,

2. the product view that defines quality by specifying the
product characteristics that contribute to quality,

3. the user view, that regards quality as subjective at-
tribute that is “in the eye of the beholder”,

4. the manufacturing view, that defines quality as confor-
mance to specification, and

5. the value-based view that regards quality as inherently
connected to the costs to achieve it.

Existing approaches to software product quality usually
take one (sometimes more) of these views. For example,
usability and performance aspects are typically addressed
from a user-based view, metric-based approaches take a
product-view and process-related methods like CMM use
the manufacturing view. As these views are necessary to
discuss quality in a differentiated manner, an integrated ap-
proach to software product quality must be able to reflect
them adequately.

2.2. Quality models

A number of quality models has been developed to de-
scribe selected facets of quality in a systematic way. We
are not able to present a comprehensive survey in this paper
but highlight some examples to show the breadth of existing
models.

Examples are the hierarchically structured models that
were first used by Boehm et al. [2] and McCall et al. [4] and
later adapted by the ISO standard 9126 [6]. These mod-
els define quality by breaking it down into the well-known
quality criteria like functionality, reliability, usability, effi-
ciency, maintainability, and portability which in turn are

broken down into more specific sub-criteria. Up to now
these models have failed to establish a broadly accepted
definition of quality because they mix criteria from differ-
ent dimensions and fail to describe characteristics precisely
enough to be actually assessable.

A completely different type of quality models are relia-
bility growth models for software as described e. g. in [8].
Such models are successfully used to predict the future fail-
ure behaviour of a software based on test data. However,
such models are applied in an isolated manner and are not
integrated with other models that describe related quality
characteristics.

For usability, there is also a variety of guidelines and
models. Seffah et al. [9], for example, developed a con-
solidated model of usability that contains aspects of safety
as well as conformance to user expectations. Safety, how-
ever, is sometimes considered as a quality attribute in its
own right. Also the reliability of the software has an effect
on the usability. The usability models known to us are not
capable of making these interdependencies explicit.

Tian [11] acknowledges the abundances of quality mod-
els for the correctness quality aspect of software and
presents a goal-driven method for selecting the appropriate
model in a specific situation. However, his work focuses
on correctness and he does not fully explain how different
models can be integrated.

Basili, Donzelli, and Asgari [1] propose a unified model
of dependability in order to elicit quality requirements.
Their focus is on user-related requirements and how to col-
lect, visualise and assess them. They do not derive any as-
sessing or constructive model from that.

2.3. Integration

Though there usually is an emphasis on certain quality
criteria, e. g.safety in the automotive domain, software de-
velopment organisations do not focus on a single quality
aspect but need to cover a broad quality spectrum. Today
they do so by applying different quality models in isolation
and thereby create a situation that makes it hard to recognise
overlaps and inconsistencies in the various models. More-
over, this situation does not allow them to discuss quality
tradeoffs in a systematic way. For example it is almost im-
possible today to estimate what impact a newly introduced
guideline for maintainability will have on the testability or
even the performance of a system. A similar example is
the dependency between usability, safety and reliability pre-
sented above.

3. Dimensions of quality models

Before we propose an integrated approach to quality
modelling, we need to identify along which dimensions the

large variety of models described in Sec. 2 differ. The mod-
els often have different intents and all concentrate on differ-
ent quality views. We identify six different dimensions that
form the basis of our integrated approach.

Purpose. We can distinguish three main types of purposes
for quality models:

e Constructive: We see constructive models as explana-
tions of relationships between constructive actions and
some aspects of software quality. For example, the use
of specific programming language constructs might in-
fluence the reliability of the system in a certain way.
These relationships can be coarse-grained but help to
understand and to choose from the possibilities during
development.

e Predictive: The predictive models help to plan the fu-
ture development of some quality aspects and hence
are used to plan the quality assurance.

e Assessing: The assessing models allow to estimate the
current state of the software to control the quality as-
surance.

View. We discussed in Sec. 2 different important views on
quality. Different quality models support different views.
For example, many models are product-based, i.e. they
measure metrics of the software and use them to assess the
quality. Other models are value-based and quantify the rela-
tionships using monetary units. In the following we use all
of the views described in Sec. 2 with the exception of the
transcendental approach because it is not suitable as a basis
for a quality model in our sense. Also note that the main
focus will be the value-based view.

Attribute. The quality attributes as defined by the ISO
(cf. Sec. 2) such as reliability or maintainability currently
constitute the dominant decomposition of quality. Com-
monly, each different quality attribute has its own set of
quality models. Generally, this makes sense because the
attributes have proven to be useful and intuitive aspects of
software quality. However, the attributes are not indepen-
dent of each other. For example, the reliability of a soft-
ware system influences its usability or the portability can
have an influence on the maintainability. Hence, there is an
overlap that needs to be considered. Moreover, there can
be contradictions because tradeoffs are involved. An ex-
emplary tradeoff can be found in Microsoft Windows NT.
From version 4.0 on the initially strict modularisation was
given up and thereby portability and reliability were sacri-
ficed for performance [10].

Phase. Several quality models concentrate on specific
phases of the software life cycle where they can be used
or they predict for. This can coincide with a quality at-
tribute. For example, maintainability models are typically
used to predict maintenance costs or efforts. Reliability
growth models on the other hand are often in use to predict
the test efforts as well as the failure rate in operation. Rather
abstract models can be used in early phases of development
where only coarse-grained estimates are available whereas
other models depend on detailed results and specific devel-
opment artefacts.

Technique. It is also often the case that a quality model
focuses on the effects of a specific kind of defect-detection
technique. For example, there are several models that are
specific to inspections. Also most reliability growth models
are only applicable to system tests that follow an operational
profile.

Abstractness. Finally, it is of importance to what level
of detail the quality model is developed. Tian [11] dis-
tinguishes general and product-specific quality models de-
pending on whether the model is valid for the whole (or
parts of the) industry or it is tailored to a specific project
or product. This is similar to upper(-level) ontologies
vs. lower(-level) ontologies. The upper ontologies contain
higher-level, more abstract concepts whereas the lower on-
tologies are related to a specific domain.

4. An integrated approach

The various dimension of Sec. 3 show the complexity
of software quality and hence also the complexity of mod-
elling it. We described in Sec. 2 the variety of existing
quality models that cover various parts of those dimensions.
Many of them are highly useful in those areas. However, for
a comprehensive quality management in software develop-
ment, we need to combine those isolated models to get a
more complete picture of software quality. Furthermore,
we need to reduce the elaborate work to develop specific
quality models by maximising reuse. The following pro-
poses a three-layer approach for quality modelling and a
corresponding method to quality management. In essence,
it consists of the idea to have a single model — the base
model that contains all relevant relationships and derived
purpose models that answer specific questions based on the
base model. Both kinds of models conform to an explicit
meta-model. For illustration purposes, we use the running
example of building web shops in the following.

4.1. Cost factor components

We use the cost factor components as the primary means
of decomposing the quality model. To use cost factors for

that has two reasons: (1) monetary value is the only metric
everything can be converted to and (2) generating monetary
value is the aim of all commercial software projects. To be
able to judge the value, we look at the opposing side: the
costs. The other parts of the quality model can be identified
by asking what does influence the cost factors. Software
costs are created by different stakeholders in different ways,
e. g.development activities and development hardware cre-
ate costs during development, user hardware and usage ac-
tivities create cost during the usage of a product and its oper-
ation creates cost in the form of server hardware and support
personnel.

Our aim in economical situations is to minimise these
costs. Hence, we are interested in facts that are related to
these cost factors. Moreover, we are able to find mappings
of quality attributes, as discussed in Sec. 2, to activities. For
example, usability is concerned with all the usage activities
whereas maintainability is driven by the development activ-
ities. Hence, if we choose the quality attributes we are in-
terested in, we will know which activities are involved and
thereby are able to select the parts of the quality model that
have an impact on those activities.

4.2. Three layers

Our proposed solution to integrated quality modelling in-
volves the three layers (1) meta-model, (2) base model and
(3) purpose models that are depicted in Fig. 1.

Meta-Model

conforms to

Lﬁ Base Model
@

extends

L

extends

Purpose Model A

Purpose Model B |§ Purpose Model C

Figure 1. The integrated model

The meta-model constitutes the construction plan for all
the other models. It defines the basic elements that can be
used to build a quality model. We give in Sec. 5 an example
how such a meta-model could look like but the general ap-
proach is independent of the concrete meta-model used. It
is only important that the meta-model allows to express the
important properties of the system, process, and environ-
ment together with their interrelations. In summary, we aim
at modelling everything that has an influence on the quality
in order to allow a comprehensive analysis.

The base model uses the framework defined by the meta-
model to define the basic quality-related relationships of the
system and process under consideration. Essentially, the

influences of various facts among each other are made ex-
plicit. In particular, we need the impacts of these facts on
the cost factors that are important in our context. Cost fac-
tors are parts of the development or use that are the ori-
gin of incurring costs. In software development, these are
mainly human activities. However, this also includes hard-
ware or energy consumption. Because in principle, we are
interested in evaluating the costs, we use cost factors as a
major means for the decomposition of quality. The parts of
our quality model that influence the cost factors form the
cost factor components that are used to compose the base
model. In our web shop example, we are probably very
user-oriented. Hence, we might see the main cost-factor in
the activities of the user. Therefore, we would model all
influences on the usage activities.

Furthermore, the base model covers the dimensions ab-
stractness of quality models identified in Sec. 3. It should
at least contain an upper-level part that is general, i.e. it
can be reused over different domains. However, it is of-
ten useful to detail the general parts to a product-specific
level. This level contains all the refined relationships for a
specific environment. In our example, we want the user to
have control over the web shop and hence allow her/him to
return to the home page with one click regardless of what
subpage is currently active. In terms of the quality model,
this means that having this possibility has an influence on
the usage activity. This is a rather specific relationship for
the web shop. However, the general concept is more uni-
versal: The user should always be able to get back to the
starting point with one step. This could be included in the
upper-level model and be instantiated in other domains.

Finally, the purpose models are derived from different
levels of abstractness of the base model to serve different
purposes, i. e. assessment or prediction. Those models have
four additional dimensions that correspond to the dimen-
sions described in Sec. 3: attribute, phase, technique and
view.

Many of the models described in Sec. 2.2 can be seen
as purpose models although they are not based on a base
model and they are not explicitly defined in all the four di-
mensions. For example, a reliability growth model uses the
attribute reliability, works in the phases system test and op-
eration, and relies on the technique operational testing. The
view, however, is not so clear. One could argue that it is a
user-based view because they often only consider failures,
i.e. defects that are visible to the user. For the web shop
example, we could derive review guidelines based on a very
detailed level by identifying the positive and negative influ-
ences of aspects of the code and architecture on the usage
activity.

4.3. Method

Based on the three-layer approach explained above, we
propose a method for quality modelling and management
that allows an interplay of different quality models for dif-
ferent purposes. The main idea is that the base model con-
tains several components on different levels of abstraction
with the quality-related knowledge available. The purpose
models quantify the relationships defined in the base model
in order to aid planning and assessment.

Quality goals. Using goals is a common approach in re-
quirements engineering, e. g. [12]. Goals are also used for
quality requirements and hence define the desired quality of
the system on a high level. The goal definitions give us the
base for the further quality modelling. It shows which qual-
ity goals are more important than others and on what level
of detail they need to be defined and analysed. This often
uses the decomposition of quality attributes that have estab-
lished corresponding metrics. For view that is already more
quality-oriented, we can use the UMD method of Basili,
Donzelli, and Asgari [1] to describe the dependability re-
quirements. The web shop might have the goal that it does
not take longer than 2 minutes for an average user to buy a
specific product.

Base model building. Having analysed which quality ar-
eas are important for our specific needs and on what level of
abstraction we analyse them, we can build cost factor com-
ponents that form the base model. It is desirable to have an
upper base model available in a company or domain that is
then detailed for specific products. This way, many reuse
opportunities can be exploited. The base model encodes all
the domain knowledge available related to quality w.r.t. the
product, the process, and the environment. The identified
relationships form the base of the following steps. How-
ever, the base model itself has benefits. It is constructive,
i.e. it gives (more or less concrete) instructions on how to
develop a “high-quality” software system. Hence, it aids the
continuous learning of all the developers involved.

The first activity in building the base model is to iden-
tify the cost factors — especially the activities — that are of
interest. Activities are the main source of costs in software
development. Hence, we want to model all the influences
on these cost factors as precise as possible. Hence, the cost
factors give us a natural decomposition of the quality model,
the components. We choose which cost factors are con-
sidered and build the components accordingly. This avoids
overlaps that would be developed when structuring using
the quality attributes directly.

Derivation of purpose models. The base model de-
scribes all important relationships that we need to consider

to model quality. In order to support the planning and real-
isation of quality assurance we need assessing and predict-
ing models. Hence, those models follow a specific purpose
for which they are built. These purpose models are derived
from the base model by quantifying the relations modelled
in the base model. This involves the following steps:

1. Choose the necessary relationships on the necessary
level of detail.

2. Choose the values on the four dimensions attribute,
view, technique, and phase.

3. Quantify the relationships adequately in order to make
assessments or predictions

The purpose models can then be used to analyse the qual-
ity goals. For example, a purpose model could be a model
that analyses the reliability of the software in the field. For
this, we choose a level of abstraction that seems reasonable,
quantify the influences of the system and process proper-
ties that influence the activity “usage of the software”, and
collect the data we need to measure the properties. In this
way, we derived a reliability model with a well-founded ba-
sis. Coming back to the web shop example, we identified a
quality goal above. Now, we need to derive a purpose model
in order to analyse this goal. We have encoded in the model
all the influences on the usage activity of the user. In the
specific case we look at the specific activity “buy product”.
These influences are now quantified either using empirical
data, other experience or expert judgement. For example,
the fact that the user is able to return to the home page with
one click improves the duration of the “buy product” activ-
ity by 10%.

5. A quality meta-model

Based on our experience with modelling maintainabil-
ity [3] we developed a novel two-dimensional quality meta-
model. Stepwise, this model was adopted to describe qual-
ity attributes as different as usability [14] and dependabil-
ity [13] and thereby became generic enough to serve as a
formal specification of the base model and the purpose mod-
els presented above.

The model is based on the general idea of hierarchical
models, i. e. breaking down fuzzy criteria like maintainabil-
ity into sub-criteria that are tangible enough to be assessed
directly. However, we found that most existing quality mod-
els promiscuously mix quality characteristics with activities
performed on (or with the system). Examples are attributes
like modifiability and comprehensibility. Though adjec-
tives are used, these attributes actually describe the activ-
ities modification and comprehension which in turn are in-
fluenced by product characteristics like modularisation [3].

While this distinction may look captious at first sight, we
claim that it is of paramount importance for discussing qual-
ity because the performed activities ultimately define the de-
velopment costs. Therefore, a quality meta-model is needed
that explicitly describes this distinction and thereby enables
us to reason about interdependencies of quality character-
istics and cost factors. Consequently, quality models that
confirm to our meta-model contain fwo tree-like structures,
one for the system characteristics and one for the cost fac-
tors, and an explicit description of impacts that puts both
trees into relation.

An example of an instance of the meta-model for the
quality attribute maintainability is shown in Fig. 2. The
matrix points out what activities are affected by which char-
acteristics and allows to aggregate results from the atomic
level onto higher levels in both trees. So, one can determine
that concept location is affected by the names of identifiers
and the presence of a debugger. Vice versa, cloned code has
an impact on two maintenance activities.

Maintenance

[Analysis | [Implementation|
Concept-|| Impact- ‘ Modifi-
- Location || Analysis Coding cation
g Concurrency X b4
é Recursion b4 x
Z 2] /ldentifiers b4 b4
S 1= :
5 — <3 Cloning b ¢ X
SINE | " Code Format b 4
& % Debugger X b%4
— é Refactoring X

Figure 2. Maintainability matrix

6. Conclusions

The definitions and models of software quality are di-
vided into several camps that do not fit straightforwardly.
However, an integrated view and model of software quality
is desirable because of the interrelations that exists between
these different attributes. This is needed for a comprehen-
sive analysis of software quality and avoids overlaps of the
models. Therefore, we propose an integrated approach to
quality modelling.

The approach is based on building a base quality model
that relies on an explicit meta-model. This ensures uniform
modelling of all the quality-related aspects. The base model
contains in a simple form all the relevant relationships of
the system, process, and environment. In particular, the re-
lationship to cost factors is important because they are of
most interest economically. Then purpose models are de-
rived by quantifying the relationships. The purpose models
serve as tools for supporting decisions during the project.

We also present a possible meta-model for quality that
proved to be appropriate for modelling maintainability [3]
and usability [14]. We are aware that there are many parts of
this integrated approach that need to be worked out in more
detail. However, we see such an approach as a viable possi-
bility. From a different perspective, we could argue that this
is the approach that is actually done today without making
the meta-model and the base model explicit. Most mod-
els developed are directly purpose models. We propose to
make those implicit models explicit and thereby gain bene-
fits such as consistency and reuse.

References

[1] V. Basili, P. Donzelli, and S. Asgari. A unified model of
dependability: Capturing dependability in context. IEEE
Software, 21(6):19-25, 2004.

[2] B. W. Boehm, J. R. Brown, H. Kaspar, M. Lipow, G. J.
Macleod, and M. J. Merrit. Characteristics of Software
Quality. North-Holland, 1978.

[3] M. Broy, F. Deissenboeck, and M. Pizka. Demystifying
maintainability. In Proc. 4th Workshop on Software Qual-
ity (4-WoSQ), pages 21-26. ACM Press, 2006.

[4] J. P. Cavano and J. A. McCall. A framework for the mea-
surement of software quality. In Proc. Software Quality As-
surance Workshop on Functional and Performance Issues,
pages 133-139, 1978.

[5] D. A. Garvin. What does product quality really mean? MIT
Sloan Management Review, 26(1):25-43, 1984.

[6] ISO. Software engineering — product quality — part 1: Qual-
ity model, 2001.

[7]1 B. Kitchenham and S. L. Pfleeger. Software quality: The
elusive target. IEEE Software, 13(1):12-21, 1996.

[8] J. D. Musa. Software Reliability Engineering: More Reli-
able Software Faster and Cheaper. AuthorHouse, 2004.

[9] A. Seffah, M. Donyaee, R. B. Kline, and H. K. Padda. Us-
ability measurement and metrics: A consolidated model.
Software Quality Control, 14(2):159-178, 2006.

[10] A. S. Tanenbaum. Modern Operating Systems. Prentice
Hall, 2nd edition, 2001.

[11] J. Tian. Quality-evaluation models and measurements. /[EEE
Software, 21(3):84-91, 2004.

[12] A. van Lamsweerde. Goal-oriented requirements engineer-
ing: A guided tour. In Proc. International Symposium on
Requirements Engineering. IEEE CS Press, 2001.

[13] S. Wagner. A meta-model-based dependability model. In
Proc. Dagstuhl-Seminar Software Dependability Engineer-
ing, 2007. To appear.

[14] S. Winter, S. Wagner, and F. Deissenboeck. A comprehen-
sive model of usability. In Proc. Engineering Interactive
Systems 2007 (EIS "07). Springer, 2007. To appear.

