
Autonomous Query-driven Index Tuning

Kai-Uwe Sattler Eike Schallehn Ingolf Geist
Department of Computer Science and Automation Department of Computer Science

TU Ilmenau University of Magdeburg
P.O. Box 100565, D-98684 Ilmenau, Germany P.O. Box 4120, D-39016 Magdeburg, Germany

k.sattler@computer.org {eike,geist }@iti.cs.uni-magdeburg.de

Abstract

Index tuning as part of database tuning is the task of
selecting and creating indexes with the goal of reducing
query processing times. However, in dynamic environments
with various ad-hoc queries it is difficult to identify poten-
tially useful indexes in advance. In this paper, we investigate
an approach addressing this problem by deciding about in-
dex creation automatically at runtime in order to speed up
processing of subsequent queries. We present a cost model
taking into account the benefits of indexes for an evolving
query workload and discuss strategies for choosing indexes
to be created in a space-limited environment.

1. Introduction

Today’s enterprise database applications are often char-
acterized by a large volume of data and high demand with
regard to query response time and transaction throughput.
Beside investing in new powerful hardware, database tuning
plays an important role for fulfilling the requirements. How-
ever, database tuning requires a thorough knowledge about
system internals, data characteristics, applications and the
query workload. Among others index selection is a main
tuning task. Here, the problem is to decide how queries can
be supported by creating indexes on certain columns. This
requires to balance between the benefit of an index and the
loss caused by space consumption and maintenance costs.

Though index design is not very complicated for small or
medium-sized schemas and rather static query workloads,
it can be quite difficult in scenarios with explorative ana-
lysis and many ad-hoc queries where the required indexes
cannot be foreseen. A particular example scenario is OLAP
where business intelligence and/or ROLAP tools produce
queries as a result of an information request initiated by a
user. These tools produce sequences of statements includ-
ing creating and building tables, inserts and queries [12].

The most current releases of the major commercial
DBMS such as Oracle9i, IBM DB2 Version 8, and SQL
Server 2000 provide already (limited) support for this sce-
nario. They include so-called index wizards which are able
to analyze a workload (in terms of costs of previously per-
formed queries) and – based on some heuristics – to derive
recommendations for index creation. This is implemented
usingvirtual indexesthat are not physically created but only
considered during query optimization in a “what if” manner.
Though these tools utilize workload information collected
at runtime they work still in design mode. That means, the
DBA has to decide about index creation and index creation
is completely separated from query processing. The draw-
back of this approach with respect to the above metioned
scenarios is that queries are dynamically generated – even-
tually on temporary tables – and therefore an offline work-
load analysis is rather difficult. Another drawback of index
advisors results from the approach of analyzing a workload
once over a fixed period of time and create a static index
configuration based on this observation. Despite this ap-
proach, in many applications database usage changes over
time, e.g. over longer periods due to adjustments to chang-
ing work processes, with new applications working on the
same data set, or frequent changes like seasonal usage or to-
wards the end of business quarters. Actually, the existence
of index advisors most of all raises the question: Why is
this not done autonomously and continually by the DBMS
itself?

Graefe discussed in [6] the idea of exploiting table scans
in queries for building indexes on the fly which can be uti-
lized by subsequent operations in the same query or even by
other queries. This approach would extend the idea of index
advisors in two directions: First, the database system auto-
matically decides about index creation without user inter-
action. Second, indexes can be built during query process-
ing, i.e. full table scans are used to create indexes which
are exploited for remaining parts of the query plan. Both
ideas are in principal orthogonal, i.e. if changes of the in-
dex configuration are performed automatically, the system

may do this between queries, or schedule these changes to
be performed during times of low system load. Building
indexes during query processing would require more pro-
found changes to currently existing systems, especially be-
cause index creation is considered to be done once during
physical implementation of the database, and therefore up to
now was not a major focus for applying optimization tech-
niques. Nevertheless, a database system implementing these
both strategies would support queries that are able to build
indexes on demand and can better meet the requirements of
dynamic explorative scenarios.

In this paper we present first results of our work towards
such index-building query support. We present a cost model
taking into account costs for index creation and mainte-
nance as well as benefits for the same and/or potentially fu-
ture queries. Furthermore, based on this model, we describe
decision strategies for choosing indexes which are to be cre-
ated during query execution in a space-limited environment.
We will show how this approach can be implemented on top
of a commercial DBMS by simulating the “on the fly” in-
dex building using theCREATE INDEX command right
before executing the query. We also discuss extensions of
the table scan operator for index building which we have
implemented in PostgreSQL. However, we do not deal with
mid-query reoptimizations for exploiting indexes built dur-
ing previous query steps. Moreover, we consider only B+-
tree indexes. We are aware these all are important issues and
plan to address them in the future. For now, we focus on the
problem of selecting and building indexes that could be cre-
ated while a certain query is executed and could be benefi-
cial for subsequent queries.

2. Processing Index-building Queries

Before discussing the cost model and the selection strate-
gies in detail we will sketch the overall process of execut-
ing index-building queries. The main objective of this ap-
proach is to improve the execution times of (possible fu-
ture) queries by creating useful indexes automatically. As
creating indexes without limits could exhaust the available
database space, we assume an index pool – an index space
of limited size acting as a persistent index cache. The size
of this pool is configured by the DBA as a system param-
eter. Based on this assumption a query is processed as fol-
lows:

(1) For a given queryQ the potentially useful indexes are
determined by simple heuristics: if a column appears in
a SELECT, WHERE, GROUP BY or ORDER BY
clause and there exists no corresponding index for this
column or combined columns so far, then the columns
are marked as candidate indexes.

(2) QueryQ is optimized in a conventional way, i.e., a cost-
optimized query plan is derived.

(3) We obtain candidate indexes from step (1) for relations
on which the table scan(s) is/are performed. These in-
dexes are called virtual indexes and we create index sets
for all possible combinations of them. This is neces-
sary because in most cases we do not need indexes on
all columns of a table. The queryQ is reoptimized us-
ing the virtual indexes, i.e. we consider these indexes
as existing indexes with all necessary statistic informa-
tion (index size etc.).

(4) Next, the cost difference of the plan from step (2) and
from step (3) is computed. This value represents the
profit of a virtual index set. The index set(s) with the
highest profit is/are called index recommendation and
is/are used to update a global index configuration where
cumulative profits of all indexes (both materialized and
virtual) are maintained. Based on the information from
this index configuration we have finally to decide about:

(a) creating indexes from the virtual index set,

(b) replacing other indexes from the index pool if
there is not enough space for the newly created in-
dexes.

The above discussion about processing queries leaves out
several important issues. First, it should be noted that step
(2) and (3) can be merged. An optimizer based on the usual
dynamic programming approach can consider relation ac-
cess via virtual indexes in the first iteration. The only re-
quired modifications to the optimization algorithm are

• to generate access plans with virtual indexes if a table
scan operator was chosen and

• to not prune a plan if only plans with virtual indexes
are better.

Thus, the result of the optimization step consists of at least
two plans: a plan without virtual indexes and one or more
plans using virtual indexes.

A second issue is the “self-interest” of a query. If we con-
sider only the best plan generated in step (3) we are able to
find only an index set contributing to the current queryQ
because we try to maximize the benefit of this query (lo-
cal optimization). If we would consider all index sets from
step (2) that provide a positive profit or at least no high loss,
we could create indexes that are possibly useful in the fu-
ture (i.e. for other queries), too. However, thisglobal opti-
mizationrequires to consider more index sets.

Due to the overhead of considering virtual indexes one
could argue not to apply this approach to each query. Instead
one could restrict this to certain queries only, e.g. queries
with high costs and requiring table scans.

Finally, under the assumption of a space-limited index
pool it can be necessary to replace existing indexes in the
pool by other indexes if the new virtual indexes promise a
higher benefit than the old one. For this purpose, different

strategies are possible. Beside classical replacement strate-
gies which have been developed over the past years (e.g.
LRU, LFU), the profit of an index can be taken into ac-
count. However, this requires to maintain statistics about
global profits, e.g. by monitoring and cumulating local prof-
its of an index for different queries.

The query processing described above is to some lim-
ited extent supported by current database management sys-
tems. Virtual indexes, existing for instance in Oracle, allow
the “as if”-runs of the optimizer as in step (3) to check the
usefulness of indexes without materializing them. Relying
on such a virtual optimization, we still have to find possi-
bly applicable index sets. The DB2 optimizer goes one step
further by providing index recommendations covering most
of steps (1) to (3). Static design tools such as index wiz-
ards or advisors are built on top of the described functional-
ity, which is also used in our approach. By building on the
index recommendation facility and the virtual optimization
of the DB2 system, our approach extends the existing ap-
proaches by providing self-tuning index maintenance at run
time.

3. Cost Model

For dealing with costs and benefits of indexes as part
of automatic index creation we have to distinguish between
materialized and virtual (i.e. currently not materialized) in-
dexes. Note, that we do not consider explicitly created in-
dexes such as primary indexes defined by the schema de-
signer. Furthermore, we assume that statistics for both kind
of indexes (virtual/materialized) are computed on demand:
When a certain index is considered for the first time, statis-
tical information about it is obtained.

A set of indexesi1, . . . , in which are used for process-
ing a queryQ is calledindex setand denoted byI. The set
of all virtual indexes ofI is virt(I), the set of all materi-
alized indexes ismat(I). Let becost(Q) the cost for exe-
cuting queryQ using only existing indexes andcost(Q, I)
the cost of processingQ using in addition indexes fromI.
Then, theprofit of I for processing queryQ is simply

profit(Q, I) = cost(Q)− cost(Q, I)

Obviously, ifvirt(I) = ∅ thenprofit(Q, I) = 0.
In order to evaluate the benefit of creating certain in-

dexes for other queries or to choose among several possi-
ble indexes for materialization we have to maintain infor-
mation about them. Thus, we collect the set of all material-
ized and virtual indexes considered so far in theindex cata-
logD = {i1, . . . , ik}. Here, for each indexi the following
information is kept:

• i.benefitis the benefit, i.e. the cumulative profit, of the
index,

• i.type∈ {0, 1} denotes the type of index, withi.type=
1, if i is materialized and0 otherwise,

• i.sizeis the size of the index, which is estimated based
on the typical parameters available as databases statis-
tics, e.g. the attribute size and the number of tuples in
the relation.

The costs for maintaining indexes (updates, inserts, deletes)
are considered in the form of negative profits. Because
both building and maintenance costs are difficult to esti-
mate without a deep knowledge of the DBMS’ cost model,
we derived some rules of thumbs experimentally (see Sec-
tion 5).

The profit of an index set according to a query can be cal-
culated in different ways (see Section 2). However, as we
used the DB2 system for our evaluation, we could use the
optimizer and recommended virtual indexes. For evaluation
purposes we used the following technique to extract cost es-
timations of queries for different index configurations:

1. compute the costs for the query without any indexes
except for primary key indexes via theEXPLAIN
mode,

2. derive a recommended index set via theRECOM-
MEND INDEXES mode,

3. compute the cost for the recommended index set.

This way, we cannot only derive the potential profit of an in-
dex set, but the advisor mode of the DB2 optimizer also pro-
vides statistical information such as the cardinality and the
number of leaf nodes that allow a precise estimation of the
index size required for our strategies. Note that we use the
cost model of the underlying DBMS. Thus, we can guar-
antee that our profit estimations are as accurate as the esti-
mated query costs.

If we deal with multi-column indexes we have to con-
sider cases where the optimizer proposes a (virtual) index
where indexed attributes are a subset or a superset (more
exactly a sublist/superlist) of the attributes of an already ex-
isting index. In such cases (and assuming the same order of
attributes) the existing index could be exploited instead of
creating a new index. However, only if the existing index is
a superset we may add the full profit. As an example con-
sider an existing indexR.+A-B+C on relationR for the at-
tributesA (ascending order – denoted by “+”), B (descend-
ing – denoted by “- ”), and C. If the indexR.+A-B is rec-
ommended we could useR.+A-B+C instead and therefore
may add the profit. For the subset case, the existing index
cannot be exploited fully because multi-column indexes are
often also used for projections, i.e. avoiding additional page
fetches for the base relations. This situation would occur, if
we assume an existing indexR.+A and a recommended in-
dex R.+A-B . Therefore, we may add only portions of the
profit depending on the conformance of both indexes and

the selectivity of their common attributes. In our approach
we used simple heuristics for this problem.

The subset ofD comprising all materialized indexes is
calledindex configurationC = mat(D). For such a config-
uration

size(C) =
∑
i∈C

i.size≤ MAX SIZE

holds, i.e., the size of the configuration is less or equal the
maximum size of the index pool.

By maintaining cumulative profit and cost information
about all possible indexes we are able to determine an index
configuration optimal for a given (historical) query work-
load. Assuming this workload is also representative for the
near future, the problem of index creation is basically the
problem of finding an index configurationCnew which max-
imizes the overall benefit:

max
∑

i∈Cnew

i.benefit

This can be achieved by materializing virtual indexes (i.e.
add them to the current configuration) and/or replace exist-
ing indexes. In order to avoid thrashing, a replacement is
performed only if the difference between the benefit of the
new configurationCnew and the benefit of the current config-
urationCcurr is above a given threshold. Here, the benefit of a
configuration is computed bybenefit(C) =

∑
i∈C i.benefit.

In addition, we have to take into account the cost building
the new indexescostbuild(i) which appear as negative profit:

benefit(Cnew)− benefit(Ccurr)−∑
i∈virt(Cnew)

costbuild(i) > MIN DIFF

Considering the cumulative profit of an index as a crite-
rion for decisions about a globally optimal index configura-
tion raises an issue related to the historic aspects of the gath-
ered statistics. Assuming that future queries are most sim-
ilar to the most recent workload, because database usage
changes in a medium or long term, the statistics have to rep-
resent the current workload as exactly as possible. Less re-
cently gathered statistics should have less impact on build-
ing indexes for future use. Therefore, we applied an aging
strategy for cumulative profit statistics based on an idea pre-
sented by O’Neil et. al. in [14].

4. Index Selection

The basic idea of our approach is to optimize the indexes
of a database system at run time according to the current
workload. As described in the previous sections, it is easy
to decide whether a query can locally benefit from a cer-
tain index configuration by quantifying the profit of feasi-
ble index combinations using virtual optimization. In order

to globally decide about an optimal index configuration for
future queries, the information about possible profits has to
be gathered, condensed and maintained to best represent the
current workload of the system, and finally based on these
information a decision has to be made if an index configu-
ration can be changed at a certain point in time.

As local profits are computed for index sets as described
in Section 2, a natural but for reasons described below
rather theoretical approach would be to maintain the cu-
mulative profit for all possible index configurations. Dur-
ing the statistics update for the locally optimal index setIi

of queryQ the local profitprofit(Q, Ii) would be added to
each configurationCj whereIi ⊂ Cj and aging applied if
required. Though we obviously only have to maintain statis-
tics for configurations that havesize(Cj) < MAX SIZEand
∀Ci, Cj : Ci 6⊆ Cj we would still face the problem of combi-
natorial explosion. As an illustration, assume that the index
size of all indexes is fixed, such that we only have to con-
sider a fixed numberk of indexes onn indexable attributes
in each configuration. These possible configurations repre-
sent mathematical combinations, so their number would be
(n

k). As an example, in the TPC-H benchmark we used for
evaluation purposes, according to the heuristics data type,
relation size, and data distribution there weren = 17 index-
able attributes, and given the reasonable space assumption
of k = 10 we would have to maintain statistics on19448
configurations, without even considering multi-column in-
dexes. This would cause an impractical overhead, especially
considering thatn would tend to be much greater in most re-
alistic scenarios.

To avoid the problems related to the combinatorial ex-
plosion of possible index configurations we instead imple-
mented strategies based on per-index statistics. These in-
clude approximations for assigning profits to single indexes
instead of index configurations and a greedy strategy for re-
placing indexes from the set of materialized indexes.

While processing a queryQ the statistics must be up-
dated by adding profits to each involved index. At this point
we considered various strategies for assigning profits to
each index involved. One alternative relates to the fact, that
there may be various combinations of indexable attributes
yielding a profit during virtual optimization. In this case,
we can either

• add profits forall minimal index setsIi yielding a
profit, or

• add only profits for the minimal index set that is lo-
cally optimal, i.e. yields the most profit,

where an index setIi is minimal, if there is no index set
Ij ⊂ Ii yielding the same profit. While the former yields
a more complete picture of possible gains of certain in-
dex configurations, the latter introduces less overhead while
over large workloads still providing a reasonable approxi-

Algorithm 1 Find locally beneficial index sets

Input: QueryQ
Output:
Locally optimal index setIopt

procedurefindBestIndexSet(Q)
Iopt := {}
profit := 0
IAttr := getIndexableAttributes(Q)
forall I ∈ buildCombinations(IAttr) do

if profit(Q, I) > profit then
Iopt := I
profit := profit(Q, I)

end if
done
return Iopt

mation of configuration benefits. To compute either the lo-
cally optimal or all beneficial index sets, Algorithms 1 and 2
respectively avoiding checks of unbeneficial configurations
can be used.

The functiongetIndexableAttributes(Q) of Algorithms 1
and 2 returns for queryQ the possible indexes. A possi-
ble implementation of this function is the index enumera-
tion algorithm presented in [18]. Actually, we used the DB2
index advisor for finding locally beneficial index sets as de-
scribed in Section 5.

Another question is, how to assign the profit of an in-
dex setI returned by the virtual optimization to the single
indexesi ∈ I in order to collect the benefit. We consid-
ered the following alternatives: for each index

• add aconstant value (equivalent to reference count-
ing) (CONST),

• add the full profit profit(Q, I) of the index set
(FULL),

• add theaverageprofit profit(Q,I)
|I| (AVG), or

• add the weighted profit according to the profit
of the single indexi profit(Q, I) profit(Q,{i})P

j∈I profit(Q,{j})
(WEIGHT).

All of them are approximations with an increasing degree
of accuracy, but even for the last alternative we have to as-
sume that

profit(Q, I) 6=
∑
j∈I

profit(Q, {j})

As an example consider a merge join, where the benefit of
two indexes on the join attributes in two relations can be
greater than the sum of the profits having either one of the
indexes alone.

Algorithm 2 Find all beneficial index sets

Input: QueryQ
Output:
Set of all minimal beneficial index setsM

procedurefindAllIndexSets(Q)
M := {}
IAttr := getIndexableAttributes(Q)
forall I ∈ buildCombinations(IAttr) do

if I ∈ M∨ profit(Q, I) = 0 then continue
if ∃I ′ ∈M :

I ⊂ I ′∧ profit(Q, I) ≤ profit(Q, I ′) then
M :=M∪ I \ I ′

end if
done
return M

So far we have focused on the analysis of a given query
and how to maintain statistics of data gathered from virtual
optimization. Now the question arises: is it necessary to up-
date the materialized index configuration? If an index setI
can replace a subsetIrepl ⊆ C = mat(D) of the currently
materialized index configuration, such that

benefit(C ∪ I \ Irepl)− benefit(C)−∑
i∈virt(I)

costbuild(i) > MIN DIFF∧

size(C ∪ I \ Irepl) < MAX SIZE

holds, indexes inIrepl can be dropped and those inI can be
created. These conditions allow only improvements of the
index configurations according to the current workload and
conforming to our requirements regarding index space, and
the criterion to avoid thrashing. For choosingI from locally
beneficial index sets we considered two strategies:

• from the beneficial index sets choose only thelocally
optimal index set (LOC), or

• check all beneficial index sets for a possiblyglobally
optimal configuration (GLOB).

These strategies are illustrated in Algorithm 3 and 4.
The locally optimal strategy is in some sense egoistic and

more beneficial for the current query, especially considering
a scenario where indexes are build on the fly during query
processing as described before. The globally optimal strat-
egy is more altruistic and could be more flexible regarding
global requirements but requires a much higher effort. Us-
ing the function from Algorithm 1 and 2 we first derive the
beneficial index sets. Next, the estimated costs are used to
update the profits of all indexes ofD according to one of the
above described alternatives (functionupdateProfits).

The replacement index setIrepl is computed using the
function findReplacementfrom the currently materialized

Algorithm 3 LOC strategy

Input: QueryQ

procedure localOptStrategy(Q)
Iopt := findBestIndexSet(Q)
updateProfits(D, Iopt)
Irepl := findReplacement(C, size(Iopt))
if benefit(C ∪ Iopt \ Irepl)− benefit(C)−∑

i∈virt(Iopt)
costbuild(i) > MIN DIFF then

/* update configuration*/
forall i ∈ Irepl do i.type:= 0 done
forall i ∈ Iopt do i.type:= 1 done

end if
perform or schedule updates onD

Algorithm 4 GLOB strategy

Input: QueryQ

procedureglobalOptStrategy(Q)
Iopt := {}; Irepl := {}
maxProfit:= benefit(C) + MIN DIFF
M := findAllIndexSets(Q)
forall I ∈ M do updateProfits(D, I) done
forall I ∈ M do

Ir := findReplacement(C, size(I))
newProfit:= benefit(C ∪ I \ Irepl)−∑

i∈virt(I) costbuild(i)
if newProfit> maxProfitthen

Iopt := I; Irepl := Ir

maxProfit:= newProfit
end if

done
/* update configuration*/
forall i ∈ Irepl do i.type:= 0 done
forall i ∈ Iopt do i.type:= 1 done
perform or schedule updates onD

index setC = mat(D) applying a greedy approach. To
do this, we sortC ascending to a replacement criterion and
choose the least beneficial indexes, until our space require-
ments are fulfilled. As replacement criteria we considered

• thenumber of referencesfor an index (REF),

• thecumulative profit of an index (PROF), and

• the ratio of profit per query or reference of an index
(PQR).

Now, if the found replacement candidate is significantly
less beneficial than the index set we investigate for a pos-
sible materialization, the index configuration can either be
changed during query execution as described in Section 2
or scheduled to be changed later on.

Based on these different alternatives for choosing in-
dexes, assigning profits and replacing indexes we can de-
fine the following strategies as illustrated in Fig. 1.

REF PROF PQR

LOC CONST
FULL FULL
AVG AVG

WEIGHT WEIGHT

GLOB CONST
FULL FULL
AVG AVG

WEIGHT WEIGHT

Figure 1. Classification of possible strategies

Here,LOC-REF combines the local index choosing ap-
proach with the reference counting strategy and uses only
theCONST approach for updating profits, whereasGLOB-
REF is based on the global index choosing strategy. In con-
trast, the other combinationsPROF andPQR can be used
together with detailed profit measures, i.e.FULL , AVG ,
andWEIGHT .

However, in our implementation and experiments de-
scribed in the following sections we consider onlyLOC -
based strategies. First of all, the number of indexes which
have to be taken into account during processing is much
smaller and therefore this approach has a significant lower
overhead. Secondly, this strategy can be easily implemented
on top of index recommendation facilities provided by com-
mercial DBMS such as the index advisor of DB2, which
recommends only the best index set for a given query or
workload respectively.

After choosing a single index or a set of indexes for ma-
terialization these indexes have to be created in order to
speed up the processing of the subsequent queries. Here,
several approaches are possible:

(1) In the simplest case, the beneficial indexes are col-
lected and the DBA is informed later on about these.
In fact, this is the same approach as supported by the
index advisors/wizards currently available for commer-
cial DBMS.

(2) The selected indexes are created offline, i.e. during
maintenance times of the database system. This avoids
delaying the query answer by building the indexes be-
fore. But queries cannot be sped up until the indexes are
created.

(3) Indexes are built by invoking theCREATE INDEX
command explicitly right before the query is processed.
We have chosen this approach for evaluating our strate-
gies using a commercial DBMS. However, the draw-

back is that the relation has to be scanned at least twice:
the first time for building the index (by executing the
CREATE INDEX command) and the second time as
part of the query.

(4) One could exploit full table scans of the query in order
to build previously chosen beneficial indexes on these
tables. The query itself cannot benefit from the index
but subsequent queries can be speed up. Furthermore,
the additional scan of theCREATE INDEX command
can be avoided.

(5) Finally, an index created as result of a table scan could
be used directly in this query. This is possible for exam-
ple in nested iteration joins where in the first iteration
the index is built which can be used in the following it-
erations. This requires to insert a “choose-plan” node
into the query plan [4]. Basically, this leads to a reopti-
mization approach.

The approaches (4) and (5) can be implemented bydeferred
indexes which work as follows: Either the user/DBA or the
system indexes creates these indexes by invoking the com-
mand

CREATE DEFERRED INDEX idx name
ON rel (columns)

Such an index is registered in the data directory like an ordi-
nary index but marked with a special flag. In addition, only
an empty index is created on disk. If now a query is ex-
ecuted containing a full table scan on relationrel, all de-
ferred indexes for this relation are built during the scan.

Deferred indexes can be used in our approach by invok-
ing CREATE DEFERRED INDEX for all indexes cho-
sen as result of our decision strategy instead of ordinary
indexes. In this way, we can avoid the additional effort of
explicit index building. However, in cases where the subse-
quent query profits from this index, it is better to explicitly
create the index right beforehand.

5. Implementation and Evaluation

To evaluate and illustrate the ideas presented in the pre-
vious sections we developed the QUIET tool using DB2 and
Java. The QUIET system consists of a middleware on top of
the DB2 database system implementing the proposed func-
tionality, a query generator based on the TPC-H benchmark
as well as a monitor for index configuration tracking. The
overall system is described in detail in [16].

Using the QUIET system we evaluated our different
strategies and parameters and compared the results to the
DB2 index advisor as well as to a static strategy with-
out indexes. We used for evaluation IBM’s DB2 Universal
Database Server V8.1 running on a Sun workstation (Sun-
Blade 2000 UltraSPARC III+, 900 MHz) with 1GB main

memory. The experiments ran against TPC-H databases of
scale factor 0.1 (100MB) and 1 (1GB). As we conducted
many test runs, most of them were executed against the
smaller database, but several key runs were also evaluated
on the large database. We observed similar results for both
database sizes, but because we did a more thoroughly test-
ing for the smaller one, we present here mainly results for
scale factor 0.1.

We used two workloads based on the TPC-H benchmark.
The first workloadW1 consisted of the original 22 TPC-H
queries, which ran four times. WorkloadW2 comprised 100
randomly selected TPC-H queries in a random sequence.
In order to be able to deal with index building costs, we
derived a simple approximation function between execu-
tion time forCREATE INDEX commands, index size and
DB2’s cost measure called timerons and added an exper-
imentally chosen build cost factor for weighting the build
costs. Using this function, we could estimate the build costs
(in timerons) of an index based on its estimated size with an
acceptable error. Index maintenance costs were not consid-
ered in our experiments because we focused on OLAP-like
queries. However, these costs could be taken into account
simply by estimating the costs of the update operation and
treat them as negative profit.

First, we wanted to investigate, how good the different
strategies perform. The following strategies were selected
for comparison:

W/OUT: The W/OUT strategy executes the queries of
workload without additional index creation, i.e. only
the primary key indexes exist in the database.

ADV: Here, a workload is executed against a database con-
taining indexes recommended by the DB2 index ad-
visor db2advis . As a time constraint we used a 10
minute limit for the brute force approach of the tool
for finding an optimal index configuration, because af-
ter this time we had a relatively stable recommenda-
tion. We distinguish two scenarios:ADV33, where we
present only 33% of the executed workload to the ad-
visor andADV100, where the complete workload is
known to the advisor. TheADV33 scenario simulates
the situation where we know only a fraction of the
workload at tuning time.

REF: The following strategies are different versions of the
LOC strategy defined in Section 4. TheREF strategy
corresponds to the reference counting strategy.

PQR: The PQR strategy combines the local strategy with
the ratio profit per query approach. The average profit
is added to the index statistics. It is theLOC-PQR-
AVG strategy according to our categorization.

LOC: The last strategy corresponds to theLOC-PROF
technique with average index profits per query.

1 GB index pool

0

200

400

600

800

1000

1200

1400

REF PQR LOC W/OUT ADV100 ADV33

strategy

q
u

er
y

ex
ec

u
ti

o
n

 t
im

e
(s

ec
s)

(a) Overall times

1 GB index pool

0

5

10

15

20

25

30

35

40

45

0 20 40 60 80 100

of queries

m
o

v
in

g
 a

v
e
ra

g
e
s

o
f

q
u

e
ry

e
x
e
cu

ti
o

n
 t

im
e
s

LOC
SLOC
WOUT
ADV100

(b) Moving averages of query execution times

Figure 2. Query execution times

Fig. 2(a) shows the results of overall execution times for
workloadW1 on a 100 MB database with an index pool of
1 GB. For comparison the index creation times forADV100
and ADV33 were included into the result, but the pure
query execution times of these strategies are shown as light-
gray boxes, too. As the diagrams indicate all index creating
strategies are faster than theW/OUT strategy without in-
dexes. Furthermore, as expected theADV100 results in the
best execution time but with higher index building costs.
However, as soon as the workload is not known to the ad-
visor completely (ADV33), the results become worse. Con-
sidering both execution and building times ourLOC strat-
egy produces the best results because it helps to select the
right indexes before execution of a query and to replace un-
necessary indexes. In addition and in contrast to the advi-
sor it takes the index building costs into account. Experi-
ments with different sizes of the index pool produced basi-
cally similar results.

In our next experiments we depict the development of
the query execution times in a detailed way. In order to an-
swer this question, we used workloadW2 and evaluated the

strategiesLOC , ADV100 andW/OUT . Thereby, we col-
lected the average query processing time after each pro-
cessed query. The index creation times of strategyADV100
were not included in these times. The results are illustrated
in Fig. 2(b) for an index pool of 1 GB. For the first queries
the average answer time is relatively high for theLOC strat-
egy, because several indexes were created. As the workload
represents a randomized TPC-H workload, a relatively sta-
ble index configuration should be possible. As the figures
indicate, theLOC strategy reaches a good configuration,
because the average query execution times decrease slightly
faster during processing the workload. The results indicate
that the adaption of index configuration works well.

Finally, we investigated the overhead caused by index
recommendation and building selected indexes. So, we ran
the workloadW2 on both the 1.0 scale factor database
and the 0.1 scale factor database and measured the times
for query analysis (including the index recommendation
step provided by DB2), index creation and query execu-
tion (Fig. 3(a)). As expected, the time for analysis is con-
stant: in our setting it took approx. 1 second for each query.
For long running queries (on the 1 GB database) this over-
head is nearly negligible (0.04% in Fig. 3(a)), but for fast
queries (in particular on the 100 MB database) the frac-
tion of time required for query analysis is up to 28% (not
shown here). Thus, considering only sample queries or ex-
pensive queries could reduce the overall time. Good candi-
dates are queries where the costs exceed a certain limit or
simply queries where the plan contains full table scans on
large tables. In Fig. 2(b) the results of such a strategy (called
SLOC) are shown, where only the top 10% of queries (re-
garding the costs) were considered.

The second issue is to reduce the effort for index build-
ing because as mentioned above up to 28% of the overall
time is spent on creating indexes. Because we had no ac-
cess to the DB2 source code, we were not able to implement
the deferred index feature. However, in order to evaluate
this in a practical environment we added deferred indexes to
PostgreSQL. Unfortunately, PostgreSQL provides no index
recommendation feature, so we have not ported the whole
QUIET system. But we can study at least the overhead of
index building during query evaluation. Our PostgreSQL
implementation supports theCREATE DEFERRED IN-
DEX command as introduced in the previous section. Be-
side the optimizer modification we extended the scan op-
erator SeqScan to deal with index building. The addi-
tional source code for all extensions consists of less than
500 lines of code. Using this implementation we measured
the times for a full table scan query with and without in-
dex building as well as for the correspondingCREATE IN-
DEX command (Fig. 3(b)). This times were measured on
the LINEITEM table of the TPC-H data set (scale factor
0.1, i.e. approx. 600.000 tuples) for an index on an inte-

Query mix on TPC-H database (scale 1)

0,04%4,00%

95,96%

query analysis
index building
query execution

(a) Overhead of query analysis and index creation

Index on LINEITEM (600.000 tuples)

0

5

10

15

20

25

30

35

table scan create index scan with index
building

time
(secs)

(b) Times for index building on the fly

Figure 3. Overhead

ger column. Further experiments with other table sizes and
indexed columns showed similar results. There is a small
overhead of building indexes during a scan, but it performs
much better than explicitly creating indexes and execute
table scan separately. Thus, in cases were a query cannot
profit from an index building deferred indexes is very help-
ful.

In summary, our experiments have shown the following
results:(1) Our approach cannot beat the index advisor if
the whole workload is known in advance. However, in dy-
namic environments with evolving and changing workloads
the query-driven approach produces better results.(2) It is
not necessary to analyze each query. Instead, considering
only expensive queries and query plans containing full ta-
ble scans can reduce the overhead of our approach and in
this way the overall query execution times.(3) We can avoid
a separate index creation by using deferred indexes which
are created while the table is scanned as part of processing a
query. Here, the overhead resulting from the additional “on
the fly” index building is rather low.

6. Related Work

Query-driven index building comprises two questions:
the selection of an index configuration and index replace-
ment strategies of the index pool.

The selection of an index configuration is an important
task of physical database design. However, this problem is
considered only during design time in literature and in cur-
rent practice, for overviews see [19, 10]. Our approach of
building indexes during query processing has some differ-
ent characteristics and challenges: early adaption to a cur-
rent workload, iterative update of the index statistics, index
replacement strategies, and possible usage of table scans of
a query for index building. Therefore, there are many sim-
ilarities to other self-tuning features of a database system,
for instance the cache and buffer management.

There are several academic approaches as well as
database products for advising index selections [5, 3, 15,
2, 17, 7]. A common approach is the analysis of a workload
given by the database administrator or by former queries
from a log file. Using this approach several techniques were
developed which use either a separate cost model or rely on
the optimizer estimates.

The works [3, 8] belong to the class of techniques which
make use of a separate cost model. Relying on a stand-alone
cost model has the important disadvantage, that the tool can-
not exactly estimate the real system behavior. In contrast,
an optimizer-based approach works directly with the sys-
tem’s estimations. The work of [8] also deals with adap-
tion to changing workloads at run time, but it is based on its
own cost model, in contrast our approach is based on opti-
mizer estimations.

An early realization of the optimizer-based approach
is described in [5]. This work describes the design tool
DBDSGN, which relies on the System R optimizer and
computes for a given workload an optimal index configu-
ration. This approach inspired the index wizards and advi-
sors of current database management systems [2, 18, 1].

The work described in [13] deals with view and index
selection in a data warehouse environment. It combines a
cost-based method with a set of rules of thumb. The cost-
based technique uses an A* algorithm, but it does not suf-
ficiently reduce the search space for real world scenarios,
which leads to the rule set. The authors of [7, 9] propose
another technique for index selection for OLAP. Here, in-
dexes are considered during the selection of materialized
views. The cost model is based on the estimated number
of returned rows of a query and is independent from the
optimizer. As an optimization algorithm the authors used
a greedy algorithm. The greedy behavior prevents the dis-
covery of index interaction, e.g. in a merge-join. Therefore,
Chaudhuri and Narasayya included in their index selection
an exhaustive search for the best configurations [2]. Fur-

thermore, the algorithm in [2] consists of two phases: enu-
merating possible configurations from every single query of
the workload and subsequently, selecting the final configu-
ration by using the mentioned combined greedy approach
with an optimizer-based cost model. The first step is simi-
lar to our approach, but the second step of our method is an
iterative replacement algorithm instead of an one step op-
eration. The costs are computed by using the systems op-
timizer and virtual or “what-if” indexes, respectively. The
DB2 approach [18] uses another approach than Chaudhuri
and Narasayya. In their work the authors include the index
selection into the optimizer to utilize its plan selection and
enumeration facilities.

Graefe mentioned the vision of index building queries in
the context of adaptive query processing [6]. He raised the
questions how to build an index during query processing
without disturbing concurrent queries. This question was
not addressed in detail in our paper, but it will be a research
focus in the future. The last point of Graefe’s paper issues
the question about how concurrent and succeeding queries
can benefit from a possible new index. These ideas lead to
the field of adaptive query processing (e.g. [4, 11]). Tech-
niques of adaptive query processing could be very useful in
combination with our approach.

7. Conclusion

Index tuning is – among others – an important task for
fulfilling the query execution time requirements of modern
database applications. Today’s commercial database sys-
tems support this task with so-called index wizards or ad-
visors recommending indexes based on a given workload.
In this paper, we argue that this support can be further im-
proved by a tight integration of query monitoring, index
selection and building with the actual query processing.
Based on a cost model we have presented different strate-
gies for identifying potentially beneficial indexes, maintain-
ing statistics on index profits and deciding about indexes for
creating and/or dropping. Furthermore, we have discussed
how this approach can be implemented on top of a commer-
cial DBMS providing basic facilities for index recommen-
dation. Though in our implementation we exploit some spe-
cial features of DB2 the approach basically can be ported
to other systems providing similar support for index rec-
ommendation. Finally, we have shown evaluation results
demonstrating that the proposed techniques and strategies
after a further refinement and adjustment to system specifics
are well applicable in commercial database management
systems. Though we did not expect to beat the performance
of index advisors for workloads known in advance, we did
exactly this in a number of test runs and came close in most
of the others.

References

[1] Oracle9i Database Online Documentation, Release 2 (9.2),
2002.

[2] S. Chaudhuri and V. R. Narasayya. An Efficient Cost-
Driven Index Selection Tool for Microsoft SQL Server. In
VLDB’1997, pages 146–155, 1997.

[3] S. Choenni, H. M. Blanken, and T. Chang. On the Selec-
tion of Secondary Indices in Relational Databases.DKE,
11(3):207 – 234, December 1993.

[4] R. L. Cole and G. Graefe. Optimization of Dynamic Query
Evaluation Plans. InSIGMOD’1994, pages 150–160, 1994.

[5] S. J. Finkelstein, M. Schkolnick, and P. Tiberio. Physical
Database Design for Relational Databases.TODS, 13(1):91–
128, 1988.

[6] G. Graefe. Dynamic Query Evaluation Plans: Some Course
Corrections?Bulletin of the Technical Committee on Data
Engineering, 23(2):3 – 6, June 2000.

[7] H. Gupta, V. Harinarayan, A. Rajaraman, and J. D. Ullman.
Index Selection for OLAP. InICDE’1997, pages 208–219,
1997.

[8] M. Hammer and A. Chan. Index Selection in a Self-Adaptive
Data Base Management System. InSIGMOD’1976, pages
1–8, 1976.

[9] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Imple-
menting Data Cubes Efficiently. InSIGMOD’1996, pages
205–216, 1996.

[10] IEEE. Bulletin of the Technical Committee on Data Engi-
neering, volume 22, June 1999.

[11] N. Kabra and D. J. DeWitt. Efficient Mid-Query Re-
Optimization of Sub-Optimal Query Execution Plans. In
SIGMOD’1998, pages 106–117, 1998.

[12] T. Kraft, H. Schwarz, R. Rantzau, and B. Mitschang. Coarse-
Grained Optimization: Techniques for Rewriting SQL State-
ment Sequences. InVLDB’2003, pages 488–499, 2003.

[13] W. Labio, D. Quass, and B. Adelberg. Physical Database De-
sign for Data Warehouses. InICDE’1997, pages 277–288,
1997.

[14] E. J. O’Neil, P. E. O’Neil, and G. Weikum. The LRU-K
Page Replacement Algorithm For Database Disk Buffering.
In SIGMOD’1993, pages 297–306, 1993.

[15] S. Rozen and D. Shasha. A Framework for Automating Phys-
ical Database Design. InVLDB’1991, pages 401–411, 1991.

[16] K. Sattler, I. Geist, and E. Schallehn. QUIET: Continuous
Query-driven Index Tuning (Software Demonstration). In
VLDB’2003, pages 1129–1132, 2003.

[17] B. Schiefer and G. Valentin. DB2 Universal Database Per-
formance Tuning. Bulletin of the Technical Committee on
Data Engineering, 22(2):12–19, June 1999.

[18] G. Valentin, M. Zuliani, D. Zilio, G. Lohman, and A. Skel-
ley. DB2 Advisor: An Optimizer Smart Enough to Recom-
mend Its Own Indexes. InICDE’2000, pages 101–110, Mar.
2000.

[19] G. Weikum, A. Mönkeberg, C. Hasse, and P. Zabback. Self-
tuning Database Technology and Information Services: From
Wishful Thinking to Viable Engineering. InVLDB’2002,
pages 20 – 31, 2002.

