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Simplified Deep Forest Model Based Just-in-Time
Defect Prediction for Android Mobile Apps

Kunsong Zhao, Zhou Xu , Tao Zhang , Yutian Tang, and Meng Yan

Abstract—The popularity of mobile devices has led to an ex-
plosive growth in the number of mobile apps in which Android
mobile apps are the mainstream. Android mobile apps usually un-
dergo frequent update due to new requirements proposed by users.
Just-in-time (JIT) defect prediction is appropriate for this scenario
for quality assurance because it can provide timely feedback by
determining whether a new code commit will introduce defects
into the apps. As defect-prediction performance usually relies on
the quality of the data representation and the used classification
model, in this work, we propose a model, called Simplified Deep
Forest (SDF), to conduct JIT defect prediction for Android mobile
apps. SDF modifies a state-of-the-art deep forest model by removing
the multigrained scanning operation that is designed for data with
a high-dimensional feature space. It uses a cascade structure with
ensemble forests for representation learning and classification. We
conduct experiments on 10 Android mobile apps and experimental
results show that SDF performs significantly better than compar-
ative methods in terms of 3 performance indicators.

Index Terms—Deep forest, feature representation learning, just-
in-time (JIT) defect prediction, mobile apps, quality assurance.

I. INTRODUCTION

SOFTWARE plays a crucial role in the daily life of people.
Due to the increasing scale and complexity of software,

almost all of software products we used today exist defects
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inevitably [1]. The defects in the products may not only neg-
atively impact the user experience, but also result in serious
economic losses. It is necessary and challenging to fix defects
earlier. Software defect prediction is an important research topic
in software engineering, which builds a model to predict whether
a software unit is defective or clean before releasing by using ma-
chine learning techniques [2]. This process helps with software
testing and debugging to save massive manual efforts [3], [4].
Many researchers contribute to this topic for the improvement
of software quality.

With the popularity of mobile devices in recent years, mobile
apps develop rapidly, especially for the Android mobile apps. As
the functional requirements of apps keep increasing, developers
need to frequently update the apps [5], [6]. Due to various
unexpected factors, the update process may introduce defects
into the next version of the mobile apps. It is important to detect
defects early in this process for developing high-quality Android
mobile apps.

Traditional defect-prediction studies determine the existence
of defects in software unit at method or class level [7]–[9].
It cannot detect possible bugs timely. To alleviate this issue,
researchers proposed just-in-time (JIT) defect prediction [10]–
[14]. The purpose of JIT defect prediction is to determine
whether a code commit will introduce defects into the software,
which has the potential to provide real-time defect feedback
to the developers, helping them take timely actions. From this
point of view, JIT defect prediction is especially suitable for the
software that needs to be updated frequently involving in many
code commits. If a new commit introduces defects into the apps,
this commit is deemed as defective, otherwise, clean. JIT defect
prediction can help developers find defects early and reduce the
effort of software testing [11].

Due to the characteristic of frequent update for Android
mobile apps, JIT defect prediction is suitable for mobile apps.
Catolino et al. [12], [15] proposed JIT defect-prediction mod-
els in the context of mobile apps. They employed the feature
information derived from commit records for classification. In
general, the defect-prediction performance is highly related to
the feature representation quality of the defect data and the used
classification model.

As the previous studies [12], [15] just used traditional classi-
fiers for classification task and employed the original extracted
features as the input of the prediction models without any
preprocessing, in this work, we use a novel deep forest model
to address the two issues. This model, called gcForest, is a
decision tree ensemble method and uses a cascade structure
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with ensemble forests for feature representation learning and
classification [16]. It consists of a multigrained scanning method
for high-dimensional features to enhance representation learning
ability. Considering that our defect data for Android mobile apps
include low-dimensional features, we use the Simplified Deep
Forest (SDF) model that does not use the multigrained scanning
to process our defect data for the JIT defect-prediction task on
Android mobile apps.

In this work, we conduct experiments on 10 Android mobile
apps and employ three indicators to evaluate the performance
of our proposed SDF model for JIT defect-prediction task.
Across the 10 apps, our proposed SDF model achieves average
F-measure, Matthew’s correlation coefficient (MCC), and Area
Under the receiver operating characteristic Curve (AUC) of
0.424, 0.304, and 0.636, respectively. We compare our SDF
model with eight commonly used classification models and SDF
combining with eight feature extraction methods. The experi-
mental results show that SDF achieves average improvements by
44.7%, 41.7%, and 7.6% in terms of F-measure, MCC, and AUC,
respectively, toward the comparative classification models, and
by 30.3%, 31.7%, and 6.0 in terms of F-measure, MCC, and
AUC, respectively, toward the comparative feature extraction
methods.

The main contributions of this article are summarized as
follows.

1) We consider the feature representation learning issue in
JIT defect prediction for Android mobile apps, which is
neglected in previous studies.

2) We propose a novel method, namely SDF, to conduct JIT
defect prediction for Android mobile apps. It achieves both
representation learning and classification by employing a
cascade structure with ensemble forests.

3) We use defect data from 10 Android mobile apps as
benchmark dataset and conduct sufficient statistic test to
analyze the experimental results. The results show that our
proposed SDF model performs significantly better than 16
comparative methods.

The rest of this article is organized as follows: Section II
introduces the related work. The details of our SDF model are
described in Section III. In Section IV, we describe the exper-
imental setup, followed by experimental results in Section V.
Section VI discusses threats to the validity of our study. Finally,
Section VII concludes this article.

II. RELATED WORK

A. JIT Defect Prediction for Traditional Software

In recent years, many studies have focused on JIT defect
prediction for traditional software. Kamei et al. [10] consid-
ered JIT quality assurance for defect-prediction models. They
used a wide range of factors based on the characteristics of
a software change and found that their method could detect
35% of all defect-inducing changes by using only 20% of effort
for inspecting all of them. Fukushima et al. [17] empirically
evaluated the performance of JIT cross-project models on 11
open-source projects. They found that models having similar
correlations between the predictor and dependent variables of-
ten got better performance. They stated that JIT cross-project

models trained on other projects could provide a viable solution
for projects with little historical data. Kamei et al. [11] employed
an empirical study to evaluate the performance of JIT models
in a cross-project context on 11 open-source projects. Their
results showed that combining the data of other projects to pro-
duce a larger training data tended to improve the performance.
McIntosh et al. [18] studied JIT models from the rapidly
evolving systems with 37 524 changes. They found that fluc-
tuations in the properties of fix-inducing changes could im-
pact the performance of JIT models. Pascarella et al. [19]
proposed a novel fine-grained JIT defect-prediction model to
predict whether the specific commits are defective or not.
They conducted experiments on 10 open-source software sys-
tems and found that defective commit was a mixture of de-
fective and clean files. Yang et al. [3] proposed an approach
called Deeper, which leveraged deep belief network and lo-
gistic regression classifier to predict defect-prone changes.
They used datasets from six large open-source projects con-
taining 137 417 changes. The experimental results showed
that their method achieved F1-scores between 0.22 and 0.63.
Yang et al. [20] proposed a two-layer ensemble learning method,
called TLEL, which combined decision tree with ensemble
learning to improve the performance of JIT defect prediction.
They conducted experiments on six large open-source datasets
and the experimental results showed that TLEL achieved a
significant improvement over the baselines. Chen et al. [21] pro-
posed a multiobjective-optimization-based supervised method,
called MULTI, which used logistic regression to build JIT mod-
els. They evaluated the performance on six open-source projects
with 227 417 changes. Their experimental results showed that
MULTI could perform significantly better than all of the compar-
ative methods on indicators of AUC and Popt. Cabral et al. [22]
provided the first investigation of JIT defect prediction with class
imbalance evolution on 10 GitHub projects. The experimental
results showed that JIT defect prediction with class imbalance
issue was worth exploring. In order to explore the influence
of context of code for JIT defect prediction, Kondo et al. [23]
proposed the context metrics that were defined as the number
of words or keywords in the context lines. Their results showed
that the combination metrics of two extended context metrics
significantly outperformed other metrics in all six projects when
considering MCC and AUC.

Different from these studies that conducted experiments on
traditional software, in this work, we focus on the JIT defect
prediction on Android mobile apps.

B. JIT Defect Prediction in Mobile Apps

Due to frequent update in Android mobile apps, JIT defect
prediction is particularly appropriate for such scenarios for
timely feedback. Catolino et al. [15] preliminarily studied the
effectiveness of logistic regression model for JIT defect pre-
diction on five mobile apps. Their results showed that the fur-
ther exploration was needed. Subsequently, Catolino et al. [12]
employed an empirical study to investigate the useful features,
the performance differences of four traditional classifiers, and
the effectiveness of ensemble learning techniques for JIT defect
prediction on Android mobile apps. Their empirical study were
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Fig. 1. Decision process of a forest.

conducted on 14 apps with 42 543 commits and the experimental
results showed that Naive Bayes achieved the best performance
compared with other classifiers and some ensemble learning
techniques.

Different from these studies that only used traditional classi-
fications to construct prediction models and did not conduct
any conversion on the original feature set, in this work, we
propose a new classification model that also performs feature
representation learning in the process of the model construction.

C. Deep Forest in Software Defect Prediction

Recently, a novel decision tree ensemble approach was pro-
posed by Zhou et al. [16], called gcForest, which consists of a
multigrained scanning and a cascade structure. The multigrained
scanning is used to enhance representation learning. The cascade
structure is inspired by the layer-by-layer processing in deep
neural networks. Once the model was proposed, it was used
by researchers in the defect-prediction study for traditional
software. Zhou et al. [24] made the first attempt to use deep
forest for defect prediction using the structure with four random
forests. Zheng et al. [25] proposed an improved deep forest,
which used data augmentation technique to replace multigrained
scanning for randomly extracting features from defective and
clean software units. The experimental results on Eclipse dataset
showed that their method could get higher performance than
baseline methods.

Different from the two studies, we are the first to introduce
deep forest model into defect-prediction task of Android mobile
apps and use the different deep forest structure.

III. OUR METHOD

Deep forest is a novel decision tree ensemble approach with a
cascade structure, which can take advantage of the useful infor-
mation of features [16]. It consists of a multigrained scanning
and a cascade forest. Each level of cascade structure has many
forests, which include many trees. For each tree, the best Gini
value is chosen to construct it. To be more specific, for each fea-
ture in the data, the Gini value is calculated across all instances.
Then, the feature that minimizes the Gini value after the partition
is selected to split all the data. Fig. 1 shows the decision process

for each forest. The red line illustrates the decision path. Given
an instance X , each tree of forest will produce the distribution
estimation of the class to which it belongs. Then, the forest
calculates the final estimate by averaging the outputs of all trees
in this forest.

Meanwhile, the multigrained scanning method is designed to
deal with high-dimensional features, such as sequence data and
image data. However, as our defect data for Android mobile apps
include low-dimensional features, the multigrained scanning
process is not necessary for our task. Due to this reason, we
employ an SDF model, which only contains a cascade structure
for feature representation learning and classification without the
multigrained scanning process. More specifically, the original
vector of the instance is transformed into the new class vector
with this cascade structure. Then, the new class vector is concate-
nated with the original ones to improve the quality of original
features. In addition, in order to make full use of the diversity
of features, each level of structure consists of four completely
random tree forests and four random forests, in which each
forest contains 500 trees at the same time, following the same
parameter settings as previous work [16]. Fig. 2 demonstrates the
cascade structure of our model. First, we input the feature vector
of a commit into the cascade structure and get its processing
result by the first level. Second, the next level of cascade receives
the input that concatenates the original feature vector with
the results processed by its preceding level. Then, we output
its processing result to the next level. In the last level of the
structure, only the class vector produced by the nearest level is
used for classification. The deep forest model has the following
advantages: 1) Compared with the complex hyperparameters
of deep neural networks, the number of cascade levels can be
automatically determined; and 2) its performance is insensitive
to parameter settings.

IV. EXPERIMENTAL SETUP

A. Datasets

In our work, we employ 10 Android mobile apps provided
by Catolino et al. [12] as our benchmark dataset to evaluate
the performance of our proposed SDF model. In order to make
the study corpus be representative and diversity, Catolino et al.
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Fig. 2. Cascade structure of our SDF model for JIT defect prediction.

TABLE I
BASIC STATISTIC INFORMATION OF THE 10 APPS

selected open-source Android mobile apps that are developed
for different application domains and have different scales as
the context of the study. This is able to reduce the threats related
to the generalization of the experimental results. These apps are
briefly described as follows: Alfresco is a widely used open-
source enterprise knowledge management tool. Android Sync
(Sync) is the Android synchronization manager that stores and
synchronizes personal information locally. AnySoftKeyboard
(Keyboard) provides a screen keyboard for Android devices,
which supports multiple languages through external software
packages. Android Wallpaper (Wallpaper) provides many beau-
tiful pictures for users, such as dynamic and static wallpapers.
ChatSecure Android (ChatSecure) is a communication encryp-
tion app, which supports XMPP and OTR encryption. Facebook
Android SDK (Facebook) provides a solution that can integrate
Facebook in Android apps. Kiwix is a web content reader that
allows Wikipedia reading offline. Own Cloud Android (Own
Cloud) is a cloud storage software for Android apps with many
functions. Page Turner is an ebook reader, which synchronizes
the reading process between multiple devices. Notify Reddit
allows users to obtain notifications from their Android wearable
devices.

Table I describes the basic statistic information of these apps,
including the number of commits (# Commit), the number
of defective commits (# Defective), the number of nondefec-
tive commits (# Clean), and the ratio of defective commits

TABLE II
DESCRIPTION OF FEATURES

(% Ratio). Each commit in the defect data is represented by six
features [12]. The brief description of these features is shown in
Table II.

B. Performance Indicators

As our JIT defect-prediction task on Android mobile apps is
to determine whether a code commit instance is defective or not,
some indicators for the typical binary classification task can be
used to evaluate the effectiveness of the proposed SDF method
and the methods for comparison. In this work, we use a total of
three indicators, including F-measure, MCC, and AUC that are
commonly used in previous defect-prediction studies, such as
F-measure [26], [27], MCC [28], [29], and AUC [14], [30]–[32].
The details of these indicators are described as follows.

The first indicator is F-measure, which is the weighted har-
monic average of Precision and Recall. It is expressed by the
following formula:

F-measure =
(1 + θ2)× Precision× Recall

θ × Precision + Recall
(1)

where Precision = TP / (TP + FP) and Recall = TP / (TP +
FN). True positive (TP) denotes the number of a commit labeled
as defective that is predicted as defective. False positive (FP)
denotes the number of a commit labeled as nondefective that is
predicted as defective. False negative (FN) denotes the number
of a commit labeled as defective that is predicted as nondefective.
θ is a tradeoff parameter between Precision and Recall. In this
article, we set θ as 2, which are used by previous works [30],
[33].
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The second indicator is MCC, which is a special case of
the Pearson correlation coefficient. Its formula is expressed as
follows:

MCC =
TP× TN− FP× FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(2)
where true negative (TN) denotes the number of a commit
labeled as nondefective that is predicted as nondefective. MCC
is a comprehensive indicator considering TP, TN, FP, and FN.

Receiver operating characteristic (ROC) curve is independent
of the specific threshold of the classifier decision, which takes
the FP rate (FPR = FP / (TN + FP)) and TP rate (TPR = TP
/(TP + FN)) as horizontal axis and vertical axis, respectively. To
a certain degree, ROC can reflect the effect of different classifiers
but is not intuitive enough. Thus, we use the area under the ROC
curve, namely AUC, as our third indicator. AUC reflects the
ability of classification intuitively.

In terms of the defect-prediction task, as researchers and
practitioners aim to identify as many defective code commits
as possible, Recall should be more important than Precision.
F-measure with parameter θ = 2 used in our work is consistent
with this goal as it emphasizes more on the Recall indicator.
In addition, the number of defective code commit instances is
fewer than that of clean ones. In such case, using MCC and
AUC are suitable because they are appropriate indicators to
evaluate model performance on imbalanced data [28], [34]. To
sum up, using the combination of the three indicators can make
our performance evaluation more comprehensive.

F-measure ranges from 0 to 1. The larger F-measure value
means the better performance. MCC ranges from −1 to 1.
MCC = −1 represents the completely inconsistent between the
predicted labels by the model and the actual labels. MCC =
1 represents the completely consistent between the predicted
labels by the model and the actual labels. MCC = 0 means that
the performance evaluation is equal to random prediction. AUC
ranges from 0 to 1. AUC = 0.5 represents that the performance
evaluation is equal to random prediction. AUC < 0.5 means that
the performance evaluation is worse than random prediction.
The closer it gets to 1, the better the performance.

C. Data Partition

To generate the training set and test set, we use the stratified
sampling method to partition the data. More specifically, for the
defect data of one app, we select half of the commit instances
with label defective and half of the commit instances with label
clean as the training set, and the remaining ones are treated as
the test set. The stratified sampling enables the proportions of
commit instances of two labels in the training set and the test
set are the same as that in the original data. In order to eliminate
the influence of random partition on experimental results, we
repeat the data partition process 30 times to reduce the bias
of the randomness. In this work, we report the average value
and standard deviation of the 30 results for each indicator. For
JIT defect-prediction task, the timewise cross validation is the
most appropriate way to generate the training set and test set.
This cross validation considers the commit time information by

TABLE III
CLIFF’S DELTA WITH RESPECT TO EFFECTIVENESS LEVEL

ranking the commit changes in a chronological order according
to their date. However, the defect data provided by the original
authors only consist of the feature sets without the time informa-
tion. As previous studies [35], [36] about JIT defect prediction
on traditional software projects have shown that the results and
conclusion based on the timewise cross validation and multifold
cross validation are basically the same. Thus, we choose the
latter one to conduct our experiments. This is an acceptable
choice in the absence of commit time information.

D. Statistic Test

We first apply Wilcoxon signed-rank test and Cliff’s delta (δ)
to analyze performance differences between method pairs (i.e.,
our SDF model and each comparative method) at significance
level α = 0.05. Wilcoxon signed-rank test is a nonparametric
approach, which does not consider the distribution of data [37].
If the p-value of Wilcoxon signed-rank test is lower than 0.05,
it means that the performance of two methods is significant,
otherwise, not significant. Cliff’s delta is a nonparametric mea-
sure of effectiveness between two methods [38]. The value of δ
ranges from −1 to 1. The greater absolute value of δ means that
it has more completely nonoverlapping between two methods.
Table III describes different values of δ with respect to level.

In addition, in order to conduct significance analysis among
our SDF model and all the comparative methods, we employ
a state-of-the-art statistic test method, called Scott–Knott Ef-
fect Size Difference (Scott–Knott ESD) [39]. The Scott–Knott
ESD uses a clustering method to divide all the methods into
many groups with significant difference (significance level α =
0.05). Compared with original Scott–Knott, this test corrects
the nonnormal distribution of the input data by applying log-
transforming for each treatment and merges groups, which have
negligible effect size of statistical differences into one group. In
our work, we employ a two-phase Scott–Knott ESD test. Fig. 3
illustrates the analysis process of this test. In the first phase,
after obtaining the indicator results of 30 rounds for all methods
on each mobile app as showed on the top of each blue dotted
rectangle, we input these results into the Scott–Knott ESD test
to get the ranking results of each method on each app as showed
in the bottom-right corner of the blue dotted rectangle. In the
second phase, we input the ranking results produced from the
previous phase into the Scott–Knott ESD test again to output
the overall ranking of each method across all apps and their
corresponding groups as showed on the right-hand side of the
figure.
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Fig. 3. Analysis process of the Scott–Knott ESD test.

V. EXPERIMENTAL RESULTS

A. RQ1: How Effective is Our SDF Model Compared With
Other Classification Models?

Motivation: As previous defect-prediction studies [40], [41]
on traditional software stated that different classification models
have significant performance difference and suggested that new
classification models should be explored for further performance
improvement. This question is designed to explore whether our
SDF model that can be treated an ensemble classifier can achieve
better performance than some typical classification models. As
one function of our SDF model is to perform the classification
task, this question can be used to investigate the superiority of
our SDF method from the aspect of classification.

Methods: To answer this question, we choose eight com-
monly used classification models as baseline methods, including
Naive Bayes (NB), Nearest Neighbors (NN), Logistic Regres-
sion (LR), Decision Tree (DT), Random Forest (RF), Support
Vector Machine (SVM), Bagging, and AdaBoost. NB is a simple
probability-based classifier that applies the Bayesian theorem
under the assumption of strong independence between features.
NN is an instance-based classifier, which uses the label of
the closest training sample instance as the classification out-
put. LR is a function-based classifier and a generalized linear
regression analysis model. DT is a tree-based classifier that
classifies instances by constructing a tree in which internal nodes
represent a partition of features and leaf nodes represent the
label to which it belongs. RF is an ensemble technique based
on decision tree whose result is determined by all the trees in
the forest. SVM is a statistical learning theory-based classifier
that makes the original instances become linearly separable
by finding a hyperplane in a high-dimensional space. Bagging
is a typical ensemble technique based on bootstrap sampling.
AdaBoost builds multiple weak classifiers with different weights
of instances and integrates them as a strong classifier by using an
adaptive approach. Before running these classification models
and our SDF model, we first normalize the original data with
z-score method [31]. The aim is to eliminate the negative effects

of the numerical discrepancy between different features. After
applying z-score normalization, the value of each feature is
constrained to a mean of 0 and a standard deviation of 1.

Results: Tables IV –VI report the average F-measure, MCC,
and AUC values and the corresponding standard deviation of 30
random runnings for SDF and eight comparative classifiers on
ten Android mobile apps. The best average indicator values are
in bold.

From Table IV, we can observe that, in terms of F-measure,
SDF model obtains the best performance on five out of ten
Android mobile apps. The average F-measure value by our SDF
model across the ten apps achieves improvements by 39.9%,
1.0%, 152.4%, 26.2%, 129.2%, 6.5%, and 2.4% compared with
NB, NN, LR, RF, SVM, Bagging, and AdaBoost, respectively.
Although the average F-measure by SDF is nearly the same as
that by DT, our model outperforms DT on seven apps. From
Table V, we can observe that, in terms of MCC, SDF model
obtains the best performance on seven out of ten Android mobile
apps. The average MCC value by our SDF model across the ten
apps achieves improvements by 94.9%, 35.7%, 70.8%, 44.8%,
10.5%, 37.6%, 11.4%, and 27.7% compared with NB, NN,
LR, DT, RF, SVM, Bagging, and AdaBoost, respectively. From
Table VI, we can observe that, in terms of AUC, SDF model
obtains the best performance on seven out of ten Android mobile
apps. The average AUC value by our SDF model across the
10 apps achieves improvements by 13.6%, 4.3%, 14.0%, 6.2%,
4.3%, 12.0%, 2.1%, and 4.4% compared with NB, NN, LR, DT,
RF, SVM, Bagging, and AdaBoost, respectively.

In addition, from Tables IV to VI, we can find that the
performance of the our SDF model and the comparative methods
receive the worst performance on Wallpaper app and Page Turner
app while achieve better performance on Sync app, ChatSecure
app, Facebook app, and Notify Reddit app in most cases in terms
of the three indicators. According to Table I, we can observe
that the ratios of defective commits for Wallpaper app and Page
Turner app are the lowest (nearly 15%) among the studied apps
while the latter four apps have relatively higher defective ratios
(larger than 25%). The magnitude of the defective ratio corre-
sponds to the degree of class imbalance of the defect data, which
is one factor affecting the performance of the defect-prediction
model. For the previous analysis, the performance fluctuation
of the methods among different Android mobile apps may be
related to the degree of class imbalance of the defect data. In
other words, the methods tend to achieve worse performance on
defect data that are more imbalanced.

Tables VII –IX present the p-value of Wilcoxon signed-rank
test and the Cliff delta (δ) for F-measure, MCC, and AUC,
respectively. Noting that, in most of the cases, our SDF model is
significantly superior to these baseline methods with large and
medium effectiveness level in terms of all three indicators.

Fig. 4(a)–(c) visualizes the statistic test results of Scott–Knott
ESD for F-measure, MCC, and AUC, respectively. These figures
illustrate that our SDF model ranks the first and is significantly
superior to all baseline methods in terms of all three indicators.

Besides the performance analysis, we also perform efficiency
analysis of our SDF model. For this purpose, we record the
execution time of one data partition of SDF and the baseline
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TABLE IV
AVERAGE F-MEASURE OF SDF AND OTHER CLASSIFICATION MODELS

TABLE V
AVERAGE MCC OF SDF AND OTHER CLASSIFICATION MODELS

TABLE VI
AVERAGE AUC OF SDF AND OTHER CLASSIFICATION MODELS

TABLE VII
p-VALUE AND CLIFF’S DELTA (δ) FOR SDF AND OTHER CLASSIFICATION MODELS IN TERMS OF F-MEASURE

TABLE VIII
p-VALUE AND CLIFF’S DELTA (δ) FOR SDF AND OTHER CLASSIFICATION MODELS IN TERMS OF MCC
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TABLE IX
p-VALUE AND CLIFF’S DELTA (δ) FOR SDF AND OTHER CLASSIFICATION MODELS IN TERMS OF AUC

TABLE X
RUNNING TIME OF THE SDF MODEL ON EACH ANDROID MOBILE APP (IN SECONDS)

Fig. 4. Scott–Knott ESD test for DF and other classification models.
(a) F-measure. (b) MCC. (c) AUC.

methods, including the feature representation learning (for our
SDF model), model training, and application time. We found that
the eight baseline methods only took a few seconds to complete
the JIT defect-prediction task on all Android mobile apps. Thus,
we do not report their execution time. Table X reports the running
time of our SDF model on each Android mobile app. From the
table, we can see that our SDF model needs less than 3 min to
run one data partition on most Android mobile apps except on
Keyboard app and Own Cloud app. The reason that our SDF
model speeds more time than the baseline methods is that SDF
consists of an additional feature representation learning process
that needs to construct a multiple-layer tree structure. Although
the computational cost of our SDF model is larger than the
baseline methods, the performance of our proposed SDF model
performs much better. In this work, we conduct all experiments
on Windows 10 (Memory: 16 GB, Processor: Intel(R) Core(TM)
i7-4790 CPU @ 3.60 GHz × 4). As computer configuration

continues to upgrade, the running time of SDF model will be
greatly reduced. As a result, the efficiency of our SDF model
will be improved and SDF can provide timely feedback with
high-end computing devices for JIT defect prediction on An-
droid mobile apps.

To sum up, our SDF model is superior to the compared eight
typical classification models, especially on the indicators of
MCC and AUC. It means that, as an emerging classification
model, our SDF is more suitable for JIT defect prediction on
Android mobile apps to achieve the better performance.

B. RQ2: Can the Feature Processing by Typical Feature
Extraction and Feature Subset Selection Methods Further
Improve the Performance of Our SDF Model?

Motivation: As the initial features may not well represent
defect data, previous defect-prediction studies for traditional
software applied some feature extraction or feature subset selec-
tion methods to the data for the better performance [42]–[44].
This question is designed to investigate whether the defect data
for Android mobile apps processed by feature extraction and
subset selection methods can further enhance the performance
of our SDF model. As another function of our SDF model is to
learn better feature representation, this question can be used to
investigate the superiority of our SDF method from the aspect
of feature representation learning.

Methods: To answer this question, we employ four typical
feature extraction methods, i.e., Principal Component Analysis
(PCA) method [45], Kernel-based PCA (KPCA) method [46],
Locally Linear Embedding (LLE) [47], Isomap Embedding
(IE) [48], and two filter-based feature subset selection meth-
ods, i.e., Correlation-based feature subset selection (Cor) [49]
and Consistency-based feature subset selection (Con) [50] for
comparison. PCA is a commonly used linear dimensionality
reduction technique, which calculates the eigenvalues of its
covariance matrix and the corresponding orthogonal unit eigen-
vectors to obtain the principal component of samples. KPCA
method is the nonlinear variant of the PCA method by using
kernel functions to map the features into a new feature space.
The effect of KPCA is related to the selected kernel function.
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TABLE XI
AVERAGE F-MEASURE OF SDF AND SDF COMBINING OTHER FEATURE EXTRACTION METHODS

TABLE XII
AVERAGE MCC OF SDF AND SDF COMBINING OTHER FEATURE EXTRACTION METHODS

TABLE XIII
AVERAGE AUC OF SDF AND SDF COMBINING OTHER FEATURE EXTRACTION METHODS

Thus, we choose five common kernel functions, including lin-
ear kernel, polynomial kernel, Gaussian Radial Basic Function
(RBF), sigmoid kernel, and cosine kernel. Linear kernel uses
a simple linear function that is κ(xi, xj)linear = xT

i xj , where
xi, xj are input vectors. It is suitable to solve the linear sep-
arability problem. Polynomial kernel can deal with nonlinear
problems and is expressed as κ(xi, xj)poly = (γxT

i xj)
T , γ > 0,

where γ is a kernel parameter. RBF introduces the Euclidean

distance and its expression is κ(xi, xj)rbf = exp(−||xi−xj ||2
σ2 ),

where || · || denotes the L2 norm and σ is a kernel parameter.
Sigmoid kernel employs the sigmoid function and is expressed
as κ(xi, xj)sig = tanh(γxT

i xj + r), where r is a kernel param-
eter. Cosine kernel applies the cosine function and its expres-
sion is κ(xi, xj)cos =

<xi,xj>
||xi||||xj || . LLE linearly reconstructs the

neighboring instances to keep the proximity relation between
the instances in the low-dimensional space. IE is a nonlinear

dimension reduction method based on spectral theory that aims
to preserve the geodesic distances in the low-dimensional space.
Cor selects a feature subset in which the features are more
relevant to the class labels but have low correlation with each
other. Con selects a feature subset that has the same consistency
as the original ones. We first use PCA, KPCA with the five kernel
functions, LLE, IE, Cor, and Con to process the defect data
separately, and then use our SDF model for defect prediction.
Thus, we have total ten comparative methods, which are short for
PCA_SDF, lin_SDF, poly_SDF, rbf_SDF, sig_SDF, cos_SDF,
LLE_SDF, IE_SDF, Cor_SDF, and Con_SDF.

Results: Tables XI–XIII report the average F-measure, MCC,
and AUC values and corresponding standard deviation of 30
random runnings for SDF and the baseline methods on ten
Android mobile apps. The best average indicator values are
in bold. Note that the results of Cor and Con are the same as
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TABLE XIV
p-VALUE AND CLIFF’S DELTA (δ) FOR SDF AND SDF COMBINING OTHER FEATURE EXTRACTION METHODS IN TERMS OF F-MEASURE

TABLE XV
p-VALUE AND CLIFF’S DELTA (δ) FOR SDF AND SDF COMBINING OTHER FEATURE EXTRACTION METHODS IN TERMS OF MCC

TABLE XVI
p-VALUE AND CLIFF’S DELTA (δ) FOR SDF AND SDF COMBINING OTHER FEATURE EXTRACTION METHODS IN TERMS OF AUC

our SDF model; thus, we do not report the results of the two
filter-based feature subset selection methods in the tables.

From Table XI, we can observe that, in terms of F-measure,
SDF model obtains the best performance on 8 out of 10 Android
mobile apps. The average F-measure value by our SDF model
across the 10 apps achieves improvements by 23.6%, 22.9%,
34.6%, 15.5%, 17.8%, 22.9%, 66.3%, and 38.6% compared with
SDF combining KPCA using linear kernel, polynomial kernel,
RBF, sigmoid kernel, cosine kernel, and SDF combining PCA,
LLE, and IE, respectively. From Table XII, we can observe
that, in terms of MCC, SDF model obtains the best perfor-
mance on seven out of ten Android mobile apps. The average
MCC value by our SDF model across the ten apps achieves
improvements by 22.1%, 19.2%, 26.7%, 21.6%, 24.1%, 22.6%,
82.0%, and 35.7% compared with SDF combining KPCA using
linear kernel, polynomial kernel, RBF, sigmoid kernel, cosine
kernel, and SDF combining PCA, LLE, and IE, respectively.
From Table XIII, we can observe that, in terms of AUC, SDF
model obtains the best performance on eight out of ten Android
mobile apps. The average AUC value by our SDF model across
the ten apps achieves improvements by 4.6%, 4.6%, 6.0%, 4.4%,
4.4%, 4.6%, 11.8%, and 7.4% compared with SDF combining
KPCA using linear kernel, polynomial kernel, RBF, sigmoid
kernel, cosine kernel, and SDF combining PCA, LLE, and IE,
respectively.

In addition, the reason that the Cor and Con achieves the
same results as our SDF methods is that the two methods both
reserve all features as the final choice. In other words, the two
filter-based feature subset selection methods have no effect on
feature reduction on the JIT defect data for Android mobile apps.

Tables XIV –XVI present the p-value of Wilcoxon signed-
rank test and the Cliff delta (δ) for F-measure, MCC, and AUC,
respectively. Noting that, in most of the cases, our SDF model
is also significantly superior to all baseline methods with large
and medium effectiveness level in terms of all three indicators.

Fig. 5(a)–(c) visualizes the statistic test results of Scott–Knott
ESD for F-measure, MCC, and AUC, respectively. These figures
illustrate that our SDF model ranks the first and is significantly
superior to SDF combining PCA and KPCA methods in terms
of all three indicators.

These baseline methods are all based on the SDF model. As
the time of feature extraction and feature subset selection can
be almost negligible compared with the time of the SDF model,
the time of the baseline methods is nearly the same as our SDF
model. Thus, we do not conduct the efficiency analysis here.

In summary, our SDF model without feature processing per-
forms better than SDF with the feature extraction methods, and
achieves the same performance as SDF with the filter-based
feature subset selection methods. It means that, as our SDF
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Fig. 5. Scott–Knott ESD test for DF and DF combining PCA or KPCA
methods. (a) F-measure. (b) MCC. (c) AUC.

inherently contains the ability of feature representation learn-
ing, the additional feature extraction operations based on PCA,
KPCA, LLE, and IE are not helpful for further performance
improvement of our SDF model and the additional feature subset
selection operations based on Cor and Con do not work in feature
dimension reduction for the studied defect data of Android
mobile apps.

VI. THREATS TO VALIDITY

We conduct experiments on a publicly available dataset that
has been released recently. Since our experimental results are
derived from defect data of ten Android mobile apps, to further
improve the generalization of experimental results, we plan
to enrich the benchmark dataset by collecting the defect data
from the top-ranked mobile apps in the GitHub repository or
collaborating with some companies to collect defect data from
the mobile apps in operation as our future work. We implement
our SDF model by carefully modifying the source code of
deep forest provided by original authors and use the third-party
libraries to implement these comparative methods. The aim is
to minimize the potential faults due to our own implementation,
which threatens the internal validity. In addition, we choose the
stratified sampling method to generate the training set and test
set without considering the commit time information due to no
such information available in the defect data at hand. This setting
may not exactly match the unrealistic scenario. We will actively
contact the authors for the raw defect data that consist of the time
information and use the timewise-cross-validation setting to

remove this threat. As the rationality of the selected performance
evaluation and statistic test method could potentially threaten the
construct validity, in this work, we employ three comprehensive
indicators to evaluate the effectiveness of our method and use
two types of statistic test methods for both analysis of method
pairs and analysis between multiple methods, which makes our
evaluation more convincing.

VII. CONCLUSION

In this article, we proposed a new method, called SDF, to
build JIT defect-prediction model on Android mobile apps. This
model is an integration of traditional forest models in breadth
and depth. It produced a deep forest system with a cascading
structure that was used for feature representation learning to
improve the effectiveness of the classification task. We con-
ducted experiments on ten Android mobile apps and used three
indicators to evaluate the performance of our SDF model. The
experimental results illustrated that our SDF model achieved
promising performance and obtained significantly better results
compared with 16 baseline methods.

In the future, we plan to collect more defect data of mobile
apps and use effort-aware indicators to measure the performance
of our SDF model. Moreover, as the performance of our SDF
method is affected by the class-imbalance issue of the defect
data for Android apps, we will improve our SDF model in the
model construction to adapt to the imbalanced defect data for
further performance improvement for JIT defect-prediction task
on Android mobile apps.
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