In-Context Convergence of Transformers

Yu Huang 1 Yuan Cheng 2 Yingbin Liang 3

¹University of Pennsylvania ²National University of Singapore ³The Ohio State University

Transformers have revolutionized many domains

Attention is all you need. Vaswani et al, (2017)

Large Language Models (LLMs)

Computer Vision DALL-E3

Wu et al. (2023)

Remarkable emergent ability for LLMs: In-Context learning

Given a prompt containing in-context examples, pre-trained LLM responds to new query token appropriately *without further fine-tuning*.

This figure is from Garg et al., (2022)

Remarkable emergent ability for LLMs: In-Context learning

Given a prompt containing in-context examples, pre-trained LLM responds to new query token appropriately *without further fine-tuning*.

Empirical evidence

- Transformers can in-context learn linear function (Garg et al, 2022)
 - ▶ Sample many $f \in \mathcal{F}$, and construct corresponding prompts:

$$(x_1, f(x_1), \ldots, x_N, f(x_N), x_{\mathsf{query}})$$

- Train transformer to predict $f(x_{query})$
- ► For a new f' and its prompt: the trained model (without finetuning) can predict f'(x_{query})

Empirical evidence

- Transformers can in-context learn linear function (Garg et al, 2022)
 - ▶ Sample many $f \in \mathcal{F}$, and construct corresponding prompts:

$$(x_1, f(x_1), \ldots, x_N, f(x_N), x_{\mathsf{query}})$$

- Train transformer to predict $f(x_{query})$
- ► For a new f' and its prompt: the trained model (without finetuning) can predict f'(x_{query})

Going forward theoretically

• Most focus on Expressive power or Generalization: Oswald et al., (2023); Bai et al., (2023); Li et al., (2023)

Empirical evidence

- Transformers can in-context learn linear function (Garg et al, 2022)
 - ▶ Sample many $f \in \mathcal{F}$, and construct corresponding prompts:

$$(x_1, f(x_1), \ldots, x_N, f(x_N), x_{\mathsf{query}})$$

- Train transformer to predict $f(x_{query})$
- ► For a new f' and its prompt: the trained model (without finetuning) can predict f'(x_{query})

Going forward theoretically

- Most focus on Expressive power or Generalization: Oswald et al., (2023); Bai et al., (2023); Li et al., (2023)
- Training dynamics of linear attention: Zhang et al., (2023); Mahankali et al., (2023); Ahn et al., (2023)

How do softmax-based transformers trained via gradient descent learn in-context?

Trasnformers are based on softmax attention mechanism.

Our contribution: first step towards in-context learning dynamics of the 1-layer softmax transformer

 Trasnformers are based on softmax attention mechanism.

ICL framework

- **Prompt:** $P = (x_1, f(x_1), \dots, x_N, f(x_N), x_{query})$:
 - Linear task: $f(x) = \langle w, x \rangle$, $w \sim \mathcal{D}_{\Omega}$
 - ▶ IID data: $\{x_i\} \cup \{x_{query}\} \stackrel{i.i.d}{\sim} D_{\mathcal{X}}$
- Goal: Predict $\hat{y}_{query} \approx f(x_{query})$.

ICL framework

- **Prompt:** $P = (x_1, f(x_1), \dots, x_N, f(x_N), x_{query})$:
 - Linear task: $f(x) = \langle w, x \rangle$, $w \sim \mathcal{D}_{\Omega}$
 - ▶ IID data: $\{x_i\} \cup \{x_{query}\} \stackrel{i.i.d}{\sim} D_{\mathcal{X}}$
- Goal: Predict $\hat{y}_{query} \approx f(x_{query})$.
- Task Distribution \mathcal{D}_{Ω} :
 - $w \stackrel{i.i.d}{\sim} \mathcal{D}_{\Omega}$ with zero mean and covariance $\mathbf{I}_{d \times d}$

ICL framework

- **Prompt:** $P = (x_1, f(x_1), \dots, x_N, f(x_N), x_{query})$:
 - Linear task: $f(x) = \langle w, x \rangle$, $w \sim \mathcal{D}_{\Omega}$
 - ▶ IID data: $\{x_i\} \cup \{x_{query}\} \stackrel{i.i.d}{\sim} D_{\mathcal{X}}$
- Goal: Predict $\widehat{y}_{query} \approx f(x_{query})$.
- Task Distribution \mathcal{D}_{Ω} :
 - $w \stackrel{i.i.d}{\sim} \mathcal{D}_{\Omega}$ with zero mean and covariance $\mathbf{I}_{d \times d}$
- **Data Distribution** $\mathcal{D}_{\mathcal{X}}$:
 - K distinct features:

$$v_k \in \mathbb{R}^d, \|v_k\| = 1 \text{ for } k \in [K], v_i \perp v_j \text{ for } i \neq j$$

• $x = v_k$ with prob p_k , where $p_k \in (0, 1)$ and $\sum_{k \in [K]} p_k = 1$.

• Embeddings

$$E = E(P) = \begin{pmatrix} x_1 & x_2 & \cdots & x_N & x_{query} \\ y_1 & y_2 & \cdots & y_N & 0 \\ & & & E^y \end{pmatrix} \in \mathbb{R}^{(d+1) \times (N+1)}.$$

Embeddings

$$E = E(P) = \begin{pmatrix} x_1 & x_2 & \cdots & x_N & x_{query} \\ y_1 & y_2 & \cdots & y_N & 0 \\ & & & E^y \end{pmatrix} \in \mathbb{R}^{(d+1) \times (N+1)}.$$

- One-layer transformer:
 - ▶ Self-attention mechanism: $W^V E \cdot \operatorname{softmax} \left(\left(W^K E \right)^\top W^Q E \right)$,
 - Mask: $W^V M(E)$, $W^K M(E)$
 - Reparameterization: $\theta = (\nu, Q)$ (Anh et al., 2023, Zhang et al., 2023)

$$W^V = \left(egin{array}{cc} 0_{d imes d} & 0_d \ 0_d^ op &
u \end{array}
ight), \quad W^{KQ} = \left(egin{array}{cc} Q & 0_d \ 0_d^ op & 0 \end{array}
ight).$$

 Consolidate Key and Query
 Fixed y = 1

- Nealy no loss of optimality!

• Output:

$$\widehat{y}_{\mathsf{query}}^{(t)} = [M(E^y) \cdot \operatorname{softmax} \left(M(E^x)^\top Q^{(t)} E^x \right)]_{N+1}$$
$$= \sum_{i \in [N]} \operatorname{attn}_i^{(t)} y_i = \sum_{k \in [K]} \operatorname{Attn}_k^{(t)} \langle w, v_k \rangle.$$

• Output:

$$\widehat{y}_{\mathsf{query}}^{(t)} = [M(E^y) \cdot \operatorname{softmax} \left(M(E^x)^\top Q^{(t)} E^x \right)]_{N+1}$$
$$= \sum_{i \in [N]} \operatorname{attn}_i^{(t)} y_i = \sum_{k \in [K]} \operatorname{Attn}_k^{(t)} \langle w, v_k \rangle.$$

• for the *i*-th token:
$$\operatorname{attn}_{i}^{(t)} = \frac{e^{E_{i}^{x^{\top}}Q^{(t)}E_{N+1}^{x}}}{\sum_{j\in[N]}e^{E_{j}^{x^{\top}}Q^{(t)}E_{N+1}^{x}}}.$$

• for the *k*-th features: $\operatorname{Attn}_{k}^{(t)} = \sum_{i\in[N], x_{i}=v_{k}}\operatorname{attn}_{i}^{(t)}.$

Training Settings

• Loss Function:

$$L(\theta) = \frac{1}{2} \mathbb{E}_{w \sim \mathcal{D}_{\Omega}, \{x_i\}_{i=1}^N \cup \{x_{\mathsf{query}}\} \sim \mathcal{D}_{\mathcal{X}}^{N+1}} \left[\left(\widehat{y}_{\mathsf{query}} - \langle w, x_{\mathsf{query}} \rangle \right)^2 \right]$$

- Training Algorithm: $Q^{(0)}$ initialize as $\mathbf{0}_{d \times d}$, with GD update.
- Prediction Error:

$$\mathcal{L}_{k}(\theta) = \frac{1}{2} \mathbb{E} \left[\left(\widehat{y}_{\mathsf{query}} - \langle w, x_{\mathsf{query}} \rangle \right)^{2} \left| x_{\mathsf{query}} = v_{k} \right].$$

performance measure

Imbalanced Cases: One dominant feature v_1 : $p_1 = \Theta(1)$; Under-represented v_k : $p_k = \Theta\left(\frac{1}{K}\right)$.

Theorem (Prediction Error Converges (Informal))

For $0 < \epsilon < 1$, $N \ge poly(K)$, $polylog(K) \gg log(\frac{1}{\epsilon})$, prediction error:

- 1. Dominant feature v_1 : with at most $T_1 = O(\frac{\log(\epsilon^{-1/2})}{\eta\epsilon})$ GD iterations, $\mathcal{L}_1(\theta^{(T_1)}) \leq \mathcal{L}_1^* + \epsilon$.
- 2. Under-represented features v_k : with at most

$$T_{k} = O(\frac{\log(K)K^{2}}{\eta} + \frac{K\log\left(K\epsilon^{-\frac{1}{2}}\right)}{\epsilon\eta}) \quad \text{GD iterations, } \mathcal{L}_{k}(\theta^{(T_{k})}) \leq \mathcal{L}_{k}^{*} + \epsilon.$$

Imbalanced Cases: One dominant feature v_1 : $p_1 = \Theta(1)$; Under-represented v_k : $p_k = \Theta\left(\frac{1}{K}\right)$.

Theorem (Prediction Error Converges (Informal))

For $0 < \epsilon < 1$, $N \ge poly(K)$, $polylog(K) \gg log(\frac{1}{\epsilon})$, prediction error:

- 1. Dominant feature v_1 : with at most $T_1 = O(\frac{\log(\epsilon^{-1/2})}{\eta\epsilon})$ GD iterations, $\mathcal{L}_1(\theta^{(T_1)}) \leq \mathcal{L}_1^* + \epsilon.$
- 2. Under-represented features v_k : with at most

$$T_{k} = O(\frac{\log(K)K^{2}}{\eta} + \frac{K\log\left(K\epsilon^{-\frac{1}{2}}\right)}{\epsilon\eta}) \quad \text{GD iterations, } \mathcal{L}_{k}(\theta^{(T_{k})}) \leq \mathcal{L}_{k}^{*} + \epsilon.$$

- Global optimal: $\mathcal{L}_k^* = \Theta(e^{-\text{poly}(K)}).$
- Nearly optimal prediction error for both <u>under-represented features</u> and the dominant feature.
- Stage-wise Convergence!

Stage-wise Convergence

Theorem (Attention score concentrates (Informal))

For any $0 < \epsilon < 1$, $N \ge poly(K)$, $polylog(K) \gg log(\frac{1}{\epsilon})$, for attention score, $x_{query} = v_k$, after T_k , w.h.p

$$(1 - \operatorname{Attn}_k^{(T_k)})^2 \le O(\epsilon).$$

Theorem (Attention score concentrates (Informal))

For any $0 < \epsilon < 1$, $N \ge poly(K)$, $polylog(K) \gg log(\frac{1}{\epsilon})$, for attention score, $x_{query} = v_k$, after T_k , w.h.p

$$(1 - \operatorname{Attn}_k^{(T_k)})^2 \le O(\epsilon).$$

Attention scores Heatmap

Theorem (Attention score concentrates (Informal))

For any $0 < \epsilon < 1$, $N \ge poly(K)$, $polylog(K) \gg log(\frac{1}{\epsilon})$, for attention score, $x_{query} = v_k$, after T_k , w.h.p

$$(1 - \operatorname{Attn}_k^{(T_k)})^2 \le O(\epsilon).$$

In-context Ability: given a test prompt from any new task w (possibly unseen), model can still well approximate test query.

$$y_{\mathsf{query}}^{(T^*)} = \mathbf{Attn}_k^{(T^*)} \langle w, v_k \rangle + \sum_{m \neq k} \mathbf{Attn}_m^{(T^*)} \langle w, v_m \rangle pprox \langle w, v_k \rangle.$$

Four-phase Behavior of Under-presented Features

Four-phase learning dynamics of under-represented features

Bilinear attention weight

 A_k : weight of query token and its target feature $B_{k,n}$: weight of query token and off-target features

Concluding remarks

• Analyzing the training dynamics of a one-layer transformer with **softmax** attention trained by GD for in-context learning.

Concluding remarks

- Analyzing the training dynamics of a one-layer transformer with **softmax** attention trained by GD for in-context learning.
- Take away message:
 - Stage-wise convergence
 - ► Attention concentration → In-context ability...
 - Novel analysis of phase decomposition.

Thanks & Questions