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Transformers have revolutionized many domains
Attention is all you need. Vaswani et al, (2017)

Large Language Models (LLMs)

Computer Vision

DALL-E3

Reinforcement Learning

Wu et al. (2023)
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Remarkable emergent ability for LLMs:
In-Context learning

Given a prompt containing in-context examples, pre-trained LLM
responds to new query token appropriately without further fine-tuning.

This figure is from Garg et al., (2022)

Learning without weight updates
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Towards understanding ICL with transformers

Empirical evidence
• Transformers can in-context learn linear function (Garg et al, 2022)

▶ Sample many f ∈ F , and construct corresponding prompts:

(x1, f (x1) , . . . , xN , f (xN ) , xquery)

▶ Train transformer to predict f(xquery)
▶ For a new f ′ and its prompt: the trained model (without finetuning)

can predict f ′(xquery)

Going forward theoretically

• Most focus on Expressive power or Generalization:
Oswald et al., (2023); Bai et al., (2023); Li et al., (2023)

• Training dynamics of linear attention:
Zhang et al., (2023); Mahankali et al., (2023); Ahn et al., (2023)
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How do softmax-based transformers trained via gradient
descent learn in-context?

Our contribution: first step towards in-context learning
dynamics of the 1-layer softmax transformer

• Trasnformers are based on softmax
attention mechanism.
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ICL framework

• Prompt: P = (x1, f(x1), . . . , xN , f(xN ), xquery):
▶ Linear task: f(x) = ⟨w, x⟩, w ∼ DΩ

▶ IID data: {xi} ∪ {xquery }
i.i.d∼ DX

• Goal: Predict ŷquery ≈ f(xquery).

• Task Distribution DΩ:

▶ w
i.i.d∼ DΩ with zero mean and covariance Id×d
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i.i.d∼ DX

• Goal: Predict ŷquery ≈ f(xquery).

• Task Distribution DΩ:

▶ w
i.i.d∼ DΩ with zero mean and covariance Id×d

• Data Distribution DX :

▶ K distinct features:

vk ∈ Rd, ∥vk∥ = 1 for k ∈ [K], vi ⊥ vj for i ̸= j

▶ x = vk with prob pk, where pk ∈ (0, 1) and
∑

k∈[K] pk = 1.
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Transformer Architecture

• Embeddings
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Transformer Architecture

• Embeddings

• One-layer transformer:

▶ Self-attention mechanism: WV E · softmax
((

WKE
)⊤

WQE
)
,

▶ Mask: WV M(E), WKM(E)
▶ Reparameterization: θ = (ν,Q) (Anh et al., 2023, Zhang et al., 2023)

- Nealy no loss of optimality!
7 / 14



Transformer Architecture

• Output:

ŷ
(t)
query = [M(Ey) · softmax

(
M(Ex)⊤Q(t)Ex

)
]N+1

=
∑
i∈[N ]

attn
(t)
i yi =

∑
k∈[K]

Attn
(t)
k ⟨w, vk⟩.
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=
∑
i∈[N ]

attn
(t)
i yi =

∑
k∈[K]

Attn
(t)
k ⟨w, vk⟩.

• for the i-th token: attn
(t)
i = e

Ex
i
⊤Q(t)Ex

N+1∑
j∈[N ] e

Ex
j
⊤Q(t)Ex

N+1

.

• for the k-th features: Attn
(t)
k =

∑
i∈[N ],xi=vk

attn
(t)
i .
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Training Settings

• Loss Function:

L(θ) =
1

2
Ew∼DΩ,{xi}Ni=1∪{xquery }∼DN+1

X

[
(ŷ query − ⟨w, x query ⟩)2

]
• Training Algorithm: Q(0) initialize as 0d×d, with GD update.

• Prediction Error:

Lk(θ) =
1

2
E
[
(ŷquery − ⟨w, xquery⟩)2

∣∣xquery = vk

]
.

performance measure
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ICL with imbalanced features

Imbalanced Cases: One dominant feature v1: p1 = Θ(1);
Under-represented vk: pk = Θ

(
1
K

)
.

Theorem (Prediction Error Converges (Informal))

For 0 < ϵ < 1, N ≥ poly(K), polylog(K) ≫ log(1ϵ ), prediction error:

1. Dominant feature v1: with at most T1 = O( log(ϵ
−1/2)
ηϵ ) GD iterations,

L1(θ
(T1)) ≤ L∗

1 + ϵ.

2. Under-represented features vk: with at most

Tk = O( log(K)K2

η +
K log

(
Kϵ−

1
2

)
ϵη ) GD iterations, Lk(θ

(Tk)) ≤ L∗
k + ϵ.
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1 + ϵ.

2. Under-represented features vk: with at most

Tk = O( log(K)K2

η +
K log

(
Kϵ−

1
2

)
ϵη ) GD iterations, Lk(θ

(Tk)) ≤ L∗
k + ϵ.

• Global optimal: L∗
k = Θ(e−poly(K)).

• Nearly optimal prediction error for both under-represented features
and the dominant feature.

• Stage-wise Convergence!
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ICL with imbalanced features

Stage-wise Convergence
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ICL with imbalanced features

Theorem (Attention score concentrates (Informal))

For any 0 < ϵ < 1, N ≥ poly(K), polylog(K) ≫ log(1ϵ ), for attention
score, xquery = vk, after Tk, w.h.p

(1−Attn
(Tk)
k )2 ≤ O(ϵ).

In-context Ability: given a test prompt from any new task w
(possibly unseen), model can still well approximate test query.

y
(T ∗)
query = Attn

(T ∗)
k ⟨w, vk⟩+

∑
m ̸=k

Attn(T ∗)
m ⟨w, vm⟩ ≈ ⟨w, vk⟩.
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Four-phase Behavior of Under-presented Features

Four-phase learning dynamics of under-represented features

Bilinear attention weight

Ak : weight of query token and its target feature
Bk,n : weight of query token and off-target features
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Concluding remarks

• Analyzing the training dynamics of a one-layer transformer with
softmax attention trained by GD for in-context learning.

• Take away message:

▶ Stage-wise convergence

▶ Attention concentration → In-context ability..

▶ Novel analysis of phase decomposition.
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Thanks & Questions
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