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Abstract 
This work documents the progress towards the implementation of an embedded solution for muscular 
forces assessment during cycling activity. The core of the study is the adaptation to a real-time 
paradigm an inverse biomechanical model. The model is well suited for real-time applications since all 
the optimization problems are solved through a direct neural estimator. The real-time version of the 
model was implemented on an embedded microcontroller platform to profile code performance and 
precision degradation, using different numerical techniques to balance speed and accuracy in a low 
computational resources environment.  
 
Keywords: Microcontrollers, Neural Networks, Muscle Forces, Cycling, Inverse Dynamics, Inverse Problems 
Solution. 

1 Introduction 
In recent times, the increase of custom devices used for sports training raised a great deal of 

interest on the development of embedded solutions for these applications. In particular, in cycling, as 
well as in many other sports, the estimation of the exerted muscle forces can support athletes and 
trainers in monitoring and improving performance. 

Concerning the pedaling task it is important to evaluate how the athlete executes it, also to obtain 
parameters that quantify the performance [1]. This aspect can be studied evaluating the role of muscle 
activity [2,3,4] or the power exerted, using different techniques [5]. To this aim a biomechanical 
model based system, able to predict forces acting on each involved joint, can be adopted with the 
design of an optimization criterion suited to determine the contribution of each muscle to the overall 
force [6]. This approach has been applied in many contexts, as in gait and running analysis [7, 8] or for 
the study of upper limb movements [9].  
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In previous studies an inverse dynamics approach, based on the solution of optimization problems, 
was proposed to estimate muscle force patterns [10,11,12,13], by the direct measurement of external 
forces exerted on the pedal, using for example custom designed devices [14], that were correlated to 
the muscle activity estimated by surface Electromyography (sEMG) data [15].  

In these studies, the real time approach was not defined as the main goal, thus not considering the 
performance of the adopted solution algorithms. In a recent study [16] a new optimization algorithm 
based on artificial Neural Networks (NN) was proposed in order to reduce the computational 
complexity of the deterministic one previously used [10], while maintaining the quality of estimation. 
In particular in these works both the kinematics and the dynamics required the solution of an 
optimization problem: the kinematic section required, for the computation of the angles between the 
elements schematizing the leg, the solution of a transcendental implicit equation; the dynamic section 
required the solution of a sparse and undetermined linear system, with 3 equations and 9 unknowns, 
subject to boundaries, through a cost function minimization, in order to estimate the muscular forces 
time trends. The solution of these problems using a set of Neural Networks for solution-prediction 
gave optimal results [16] when implementing the required algorithms on a standard workstation (Intel 
Core i7 with 16Gb RAM running Matlab in Windows 7 64-bit environment).  

In this work, the possibility of implementing a neural solution in an embedded environment for the 
muscular force estimation was assessed on the basis of the aforementioned approach. When 
implementing this algorithm in an embedded environment, the limited computational capabilities calls 
for a trade-off among precision, memory footprint, and computational cost. Different studies tested the 
embedded implementation of NNs to achieve optimal results, either by re-arranging the operations 
required to compute the linear part of the NN [17] to fully exploit pipelining, or by speeding up the 
costly non-linear activation function through different numerical approximation 
[18,19,20,21,22,23,24].  

Another issue worth being addressed in this implementation is the possibility of solving in real 
time the unknowns. In the original proposed algorithm data were processed in batch, allowing heavy 
filtering for noisy signals. In a real-time approach, only a small time-window for the signal is 
available, thus excluding the possibility of intensive filtering. The inverse model requires, to be 
computed, several II order numerical differentiations, that naturally introduce an amplification for high 
frequency noise. Different techniques are used in the literature to obtain a noise-rejecting differentiator 
[25,26,27,28,29] that can be applied easily in embedded environment. 

In the first part of this paper, the biomechanical model along with the equations for the assessment 
of its parameters will be shortly presented. Then, the real-time implementation of the model will be 
explained from a systemic point of view, with special attention to the neural estimator and the 
differentiation techniques. The embedded implementation will be presented along with the 
performance evaluators considered. Results, conclusions and final considerations will follow.  

2 Biomechanical Model  
In order to reproduce the cycling task, a biomechanical model of the lower limb was defined based 

on 3 joints (i.e. ankle, knee, and hip) and 9 muscles, as described in [10]. The model was used to 
assess the muscular forces using 3 muscular moments, one for each joint, obtained by a previous 
inverse dynamics approach. To do this, a cost function minimization was proposed, defined using a 
physiological criterion. 
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Figure 1: Kinematic chain (a) and correspondent muscular model (b) of the lower limb while cycling. 

 
The adopted kinematic planar model of the lower limb (Figure 1a) was defined considering 3 body 

segments (AB = foot, BC = shank, CD = thigh) and 2 bicycle elements (DO = frame, OA = crank) 
constrained by hinge joints, so described by 2 degrees of freedom. On this assumption, the position of 
each element in the sagittal plane, being their lengths known, can be reconstructed using 2 of the 
relative angles values θC, θP, θ1, θ2, θ3. The angles θC and θP, together with the pedal forces Fn and Ft, 
along the perpendicular and parallel axis to the pedal load plane, were directly measured on a cycling 
simulator [14,30], already validated in recent works for monitoring cycling activity in real time [31]. 
An inverse dynamics model provided muscular moments for each joint. This approach requires the 
solution of differential and non linear equations, with a non-negligible computational cost.  

Subsequently, 9 muscles are identified (Figure 1b) as the ones involved in the task and necessary 
to set the model: 1) Tibialis anterior (TA); 2) Soleus (SO); 3) Gastrocnemius (GA); 4) Vastii (VA); 5) 
Rectus femoris (RF); 6) Short head of biceps femoris (BFs); 7) Long head of Biceps Femoris (BFl); 8) 
Iliacus (IL); 9) Gluteus Maximum (GLM).  

The muscular moments and the muscular forces at each joint j are related as: 

 (1) 

 
where Mj represents the muscular moment at the j-th joint, Nj is the number of muscles acting on 

the j-th joint, Fi is the muscular force exerted by the i-th muscle and dij is the effective moment arm of 
the i-th muscle from the j-th joint, estimated as a function of the joint angle [32].  

Minimizing the cost function: 
 

 with  
(2) 

 
where p is the total number of muscles, PCSAi and Fimax are respectively the physiological cross 
sectional area and the maximum force value for the i-th muscle. Muscular force values can be obtained 
even if p is greater than the number of equations previously obtained. The chosen cost function is 
widely used in literature [33,34] as it relies on the co-activation of all the muscles involved in the 
gesture. 
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3 Methods and Materials 
This section will present the methods applied to reproduce the biomechanical model in embedded 

environment. First, the real-time version of the biomechanical model will be overviewed. Then, an in-
depth explanation of the two main peculiarities of the model (the Neural Estimator and the Noise-
Rejecting Differentiator) will be presented. Finally, the actual workbench used to test the algorithm 
will be discussed.  

3.1 Real-Time Inverse Model Overview 
In order to simplify its implementation and subsequent test-debug procedure, the proposed model 

can be solved considering two different sections: the first, addressed as “kinematic section”, is related 
to the determination of the complete kinematics, considering as inputs the actual angles measured as 
explained above; the second, addressed as “dynamic section”, aims to the determination of the joint 
reactions and the joint moments, using current and past data obtained from the kinematic section, and 
of the muscular forces. As displayed in Figure 2, the input data provided to the whole model are the 
angles θc and θp and the pedal force components Fn and Ft.  

The kinematic section of the model receives as input only the angles and, using trigonometric 
equations, computes the {x,y} positions for the leg joints. For the computation of the other angles, 
instead of solving an inverse trigonometry problem, a neural network was used. The input of the 
neural network is the cosine of both θc and θp angles while the output is θ3. The other angles θ1 and θ2 
are calculated as a function of θ3. The network is composed by a single neuron for reasons that will be 
explained in the next section. 

In the dynamic section, the joint reactions and the moments must be computed to determine the 
muscular forces of the leg. The mechanical model, summarized above, is a II order one, which 
requires a numerical solution for the acceleration resolution of several elements composing it. To 
compute the second derivative of a quantity with respect to time, at least the current value, and the 
previous two samples of the actual quantity, must be known. Since this is a real-time model, a buffer 
system that holds the previous values of the quantity must be interposed between the kinematic and 
the dynamic parts of the model. The buffer system is composed by a set of three bi-dimensional 
arrays, two for the {x,y} positions, and one for the angles. Every time the model is computed, the 
array acts like a shift register, discarding the oldest sample and replacing it with the new one. 

Given the experimental nature of the data a noise-rejecting differentiator, which works on more 
than 3 points, was implemented. More information on the differentiator will follow. Once the joint 
reactions are computed, the muscular moments can be easily calculated. The final computation of 
muscular forces is demanded to the Neural System, which receives the three muscular moments Mb, 
Mc and Md as inputs.  
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Figure 2 - Inverse Biomechanical Model  

 

3.2 Neural Estimator 
The neural estimator implemented in the model was refined starting from the one implemented in 

[16], and is composed by two parts: a Multiple-Input-Single-Output (MISO) NN, to calculate the θ3 
angle, and a Neural System of nine MISO NN, to assess the muscular forces (one for each force).  

The main purpose of the original NNs in [16] was to obtain the maximum performance through 
heavily filtered signals, and for this reason, the criterion to size the NNs was maximizing the accuracy 
with the smallest number of neurons (to preserve generalization capabilities). Conceiving the problem 
in an embedded environment, two considerations must be done: first, since the computational 
capabilities of a MCU is limited, some accuracy should be traded for performance, to ensure the real-
time capabilities of the system; then, as it will be shown, a serious problem affecting the embedded 
implementation of the model lies in the strong noise introduced by the process. From this perspective, 
a simpler and less accurate NN, with less neurons, can actually enhance the model performance by 
introducing a natural low-pass filtering of data. For these reasons, the NNs used for the embedded 
implementation of the model were reduced in complexity. The NN used to compute the θ3 angle has a 
single nonlinear (tangent sigmoid) neuron in the hidden layer, and uses as input the cosine of θp and θc 
angles. All the NNs used to compute the nine muscular forces have four nonlinear (tangent sigmoid) 
neurons in the hidden layer, and use the three muscular moments Mb, Mc and Md as inputs. Networks 
were trained and validated in Matlab® environment according to the methodology described in [16, 
35]. To enhance the embedded performance of the NN, according to [18, 19], a speedup for the 
activation function of the hidden neurons was obtained by computing it through a 2nd degree 
polynomial interpolating function. 

3.3 Noise-Rejecting Differentiator 
The dynamic section of the model requires the computation of the second derivative for unfiltered, 

noisy signals. The magnitude impulse response of an ideal second degree differentiator is |H(ω)| = ω2, 
exalting the high frequency components of the signal, and lowering the signal to noise ratio (SNR) for 
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signals affected by white Gaussian noise. In the original implementation of the model [16], the 
problem of noise was solved by using heavy low-pass filters on the signals. However, the filter lengths 
and the real-time nature of the present implementation discourage the use of intermediate filtering 
during the process. An alternative approach [25], proposes to use differentiating filters, shaped to have 
a response proportional to the low-pass filtered second derivative of the excitation. The filters order N 
is variable, must be odd and larger than 5. From N, the coefficients and the equations for the filtering 
can be easily derived through Eq. 3 and Eq. 4. 

 

  (3) 

 
Where M = (N-1)/2 and the  coefficients can be calculated by a recursive algorithm for k = 

[M-1, …, 0].  
 

  (4) 

 
The differentiator was implemented in the system in the form of a library, where the coefficients 

are pre-computed at the beginning of the program execution using a separate function. Theoretically, 
the order of the filter could be changed in real time by re-computing the coefficients. However, the 
order of the filter determines the length of the filter itself, i.e. the number of points needed in the 
dynamic buffer to compute the second derivative. Since the memory for the buffer is allocated 
statically (through a series of #define directives) the order of the filter can be modified at compile-
time, not run-time. Obviously, increasing the filter length yields a smoother signal at the cost of 
heavily degrading the real-time algorithm performance. A comparison of different options will be 
presented in the results section.  

3.4 Workbench 
The model was initially developed in C and tested in x86 Windows environment using the simple 

CodeBlocks IDE. In this environment, a set of libraries was created for the model: the NNs and the 
noise-rejecting differentiator. To implement the project in embedded environment, a powerful Cortex 
M4-F ARM microcontroller was used, the LM4F120H5QR device, mounted on the Stellaris® 
LaunchPad (Texas Instruments). This microcontroller has a maximum clock frequency of 80MHz, 
256KB of Flash / 32Kb SRAM / 2KB EEPROM, dual 12-Bit ADC, a dedicated Floating Point Unit, 
and the board implements a RS232 interface, through the programming port (In-Circuit Debug 
Interface ICDI), that can be used for communication. The free IDE Code Composer Studio was used 
to program the microcontroller board. To test the real-time performance of the model, a control 
program was created in Matlab, to send a stream of data to the MCU, to recover the results, to assess 
the error introduced by the microcontroller, and to show the results. The graphical interface of the 
Matlab utility is shown in Figure 3. Code profiling, however, had to be performed on the MCU itself: 
the RS232 interface implemented in Matlab library is a harsh bottleneck, introducing a considerable 
delay between samples, which should not be accounted for when evaluating code performance. For 
this reason, execution times were measured by clock-cycles using the debug utility of Code Composer 
Studio. 
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Figure 3: Graphical Interface of Matlab control utility. 

4 Results 
The algorithm was validated on the test bench previously illustrated and the code was profiled both 

in terms of precision, memory footprint and clock cycles required for computation. The code was built 
with different compile-time parameters allowing fine-tuning of performance. In this investigation, two 
parameters were changed:  

 Order (i.e. number of samples used) of the II order differentiator; 
 Activation function of the NNs. 

In the following table, for differentiators of variable length, the computational cost of the 
algorithm, in terms of clock cycles and maximum sampling, is shown. Indeed, the actual 
microcontroller works with a clock of 50MHz, but the TM4C1294NCPDTI model, lately released by 
Texas Instruments, belonging to the same family of microcontrollers, has a 120MHz internal clock, 
and yields higher performance.  

 

 
Table 1: Computational cost for different filtering orders. 

 
As displayed, the computational cost for the model rises quickly as soon as the order of the 

differentiator grows. This is due to the increased number of operations required to compute the 
dynamic section of the model. However, in terms of overall error, the best results are obtained with an 
order of 5 or 7. Even if a higher order filter better removes the noise of the signal, the system responds 
slowly and in proximity of quick variations the error is considerable. Indeed, an order higher than 9 
should be considered only if more data processing is needed for which noisiness is less desirable than 
inaccuracy.  

The second parameter that was investigated was the activation function used for the hidden 
neurons of the NN. Two alternatives were used: the full-precision activation function, computed using 
math.h C library, and a polynomial interpolation of the activation function, pre-computed in Matlab, 
composed by a fit of five 2nd order polynomials [18]. The second solution is obviously a tradeoff 

ORDER CLOCK 
CYCLES 

PERIOD 
@50MHZ 

PERIOD 
@ 120MHZ 

MAX FREQUENCY 
@50MHZ 

MAX FREQUENCY 
@120MHZ 

5 125632 0.00251264 0.001046933 397.988 955.171 
7 172991 0.00345982 0.001441592 289.032 693.678 
9 191415 0.0038283 0.001595125 261.213 626.910 
11 212707 0.00425414 0.001772558 235.065 564.156 

A Neural Network Embedded System for Real-Time Estimation of Muscle Forces
Gabriele Maria Lozito, Maurizio Schmid, Silvia Conforto, Francesco Riganti Fulginei and Daniele

Bibbo

66



 

 

between precision and performance. By the combination of this parameter and the order, two final 
solutions are proposed, one for best performance, one for highest precision. Percent Root Mean Square 
Error (%RMSE) was calculated as the average RMSE (on the 9 forces) between the output in 
embedded environment and the output obtained from the original algorithm, on a set of 20.000 
samples already used in [16]. This comparison shows, in quantitative terms, the degradation 
introduced by transposing the algorithm from a batch Matlab implementation to a real-time, embedded 
implementation. 

a) Performance Configuration 
2nd Degree Differentiator Order 5 

Activation Function Polynomial 
% RMSE 10.3% 

Clock Cycles 125632 
Cutoff Frequency (50MHz Clock) 397 Hz 

Cutoff Frequency (120MHz Clock) 955 Hz 
Flash Memory Occupation 4.13kB 

 
b) Precision Configuration 

2nd Degree Differentiator Order 7 
Activation Function Full-Precision 

% RMSE 3.61% 
Clock Cycles 212636 

Cutoff Frequency (50MHz Clock) 235 Hz 
Cutoff Frequency (120MHz Clock) 564 Hz 

Flash Memory Occupation 3.59kB 
 

Table 2: Code configurations for best performance and best precision. 
 

As it can be seen in Table 2, error for the Performance configuration is almost 3 times higher than 
the Precision one, whereas the speedup factor is less than 2. The Performance configuration should 
only be used if a coarse and rapid guess of the forces is needed.   

5 Conclusions and Future Developments 
In this work, a real-time embedded implementation for a biomechanical model of the leg during 

cycling activity was created. The original model, created in Matlab environment using batch data, 
allowed heavy filtering and data conditioning. The new model was developed to run in embedded 
environment in real time, thus using only a limited buffer of data, and with the idea of the tradeoff 
between accuracy and performance. This model was first tested in Matlab, to validate the on-line 
implementation of the mechanical model. Then, an x86-based C implementation of the model was 
developed and included in a set of libraries. The libraries were used to implement the model in 
embedded environment using a microcontroller unit, receiving a stream of data from a Matlab control 
application. Achieving useable results without the filtering capabilities of a batch algorithm, required 
complex numerical considerations: the implemented libraries have numerous tools that can be 
activated through pre-compiler directives. Different configurations of the model were tested and two 
optimal configurations were proposed, one precision-oriented and one performance-oriented. Both 
configurations largely satisfy minimum requirements for frequency, since for the biomechanics of the 
studied gesture, the force information is contained between 0 and 40 Hz. Such a large gap in terms of 
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computational time can be used either to increase precision further, through intermediate filtering, or 
to include additional data elaboration, like sEMG correlation algorithms [15]. 
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