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Abstract—In this research we design a time series geo-location
prediction model based on Long Short-Term Memory (LSTM)
with a custom geometric loss function. In order to estimate a close
to optimal LSTM Recurrent Neural Network (RNN) architecture
we use an innovative Genetic Algorithm (GA) tailored for RNN
hypertuning. The proposed Neuro-Genetic Algorithm (Neuro-
GA) includes a similarity function for the selection of the RNN
that will be recombined and an early stopping criterion for the
worse performing RNNs. In addition, we examine the appli-
cability of an incremental learning approach for personalized
RNN modeling. Compared with auto-machine learning and deep
learning models, the proposed methodology shows substantially
better prediction results and the early stopping criterion improves
the speed of hypertuning convergence. The experiments also show
that the incremental learning approach has significant better
accuracy than a generic RNN as the personalized models are
retrained to new users location data.

Index Terms—Mobility, Deep Learning, Recurrent Neural Net-
works, Time Series, Genetic Algorithms, Incremental Learning

I. INTRODUCTION

The human movement behaviour has no strong theoretical
understanding and we cannot apply full numerical models.
The decision of a moving entity to move straight, change
direction or accelerate his speed cannot be modelled efficiently
by kinematic equations [1]. However, analyses of historical
mobility data have shown repeated behaviour patterns and
strong autocorrelation values making a data-driven approach
a feasible solution [2].

The methodology and the approach for mobility prediction
modeling depends on the use case and the specification of
the target values. The three main approaches are: (a) the
distribution of the mobility entities in points of interests [3],
(b) the full trajectory prediction [4], and (c) the one-step-ahead
geo-location prediction [5]. In this research we focus on the
one-step-ahead geo-location prediction following a time series
forecasting technique that analyse a look-back window of
previous geo-locations and predict the next-step geo-location.
The geo-locations are the target values and represented by the
latitude (lat) and longitude (lon).

The one-step-ahead geo-location prediction is a challenging
task mainly due to the fact that the mobility direction and
speed can change abruptly and that the environment that the
mobile entities are moving are usually very dynamic (e.g.

smart cities, transportation systems, etc.). This motivated us
to focus our research in an adaptive data driven solution
that leverage geo-location data, the time component of the
chronologically data sequences, and the ability to learn from
long-term dependencies. LSTMs are a popular option for time
series forecasting, they are a special case of neural networks
layers capable to capture long-term dependencies but they
have the disadvantage of computational heavy training. This
problem becomes more severe if the amount of data is large
and and we use a hypertuning method to find a close to optimal
LSTM-RNN architecture.

Genetic Algorithms (GA) is an evolutionary computation
method capable of solving hyper-parameter optimization prob-
lems. In the context of RNN, GA are used for the estimation
of a close to optimal LSTM-RNN architecture, through a
population of candidate neural networks and a natural selection
process. The generic GA has two important limitations in the
case of RNN hypertuning. Firstly, the mating selection is not
a straightforward process for heterogeneous topologies and
secondly the evaluation of a population of neural networks
through consecutive generations is a computational heavy
method. In this paper, we propose the Neuro-Genetic Algo-
rithm (Neuro-GA) which is a GA tailored in the peculiarities
of RNN and tackles the aforementioned limitations.

The three major contributions of our research are:

• We propose a geometric loss function for the RNN
training in mobility data.

• We significantly improve the Genetic Algorithm for Hy-
pertuning RNN with early stopping criterion and a new
similarity function for recombination.

• We apply an incremental learning approach for personal-
ized mobility prediction and evaluate the results.

The rest of the paper is structured as follows: Section 2
highlights the related work in mobility prediction. Section 3
explains how the mobility prediction can be modelled with
time series RNNs. Section 4 explains an automatic hyper-
tuning methodology that leverage computational intelligence
for smart and efficient neural network adaptation. Section 5
introduces a simple but efficient methodology for personalisa-
tion mobility training and prediction. Section 6 describes the
experimental setup and the evaluation results of our proposed



methods. Finally, Section 7 concludes the paper and suggest
future directions.

II. RELATED WORK

Mobility prediction is used to represent the estimation of
future location of mobile entities. In the literature, there exists
several state of the art algorithms that predict mobility using
mobile entities past movements. In [6], the authors proposed
mobility prediction in Ad Hoc networks for the purpose of
improving routing in a network. For this, they trained a multi-
layer and RNN model that predicts the location of mobile
entities using time series data of their locations. The neural
network is a three-layered architecture and trained using back
propagation through a time-series algorithm. In another study
[7], the authors present a forecasting technique that predicts
the pedestrian movements using the urban vehicular traffic
traces collected in Australia. Firstly, they proposed a method to
divide the pedestrian datasets in form of cell sequences using
cell construction method. Then they applied the Deep Learning
(DL) method called Recursive Neural Network with a Gated
Recurrent Unit (GRU) to predict the next cell sequence which
is the next location of a pedestrian using the available historic
cell sequence. The advantage of this work is that it required
limited computational effort for training.

Daksh et al. [8] also proposed a DL technique for human
trajectory prediction. For this they used spatial matching
network and modelled the spatial context of any subject of
interest in a surrounding environment to get better trajectories
prediction. They proposed a Spatially Static Context Network
(SSCN) for modelling purposes and then they applied pooling
mechanism and trained attention-based LSTM model. Next for
the trajectory prediction, this work [9] provides a new method
called Crowd Interaction Deep Neural Network (CIDNN) for
displacement prediction. The method consists of the four
different components as: firstly, motion encoder encodes tra-
jectories using LSTM, secondly location encoder encodes
the pedestrian’s location and their influences, thirdly crowd
interaction gives linear combinations of trajectory encoding
and fourth displacement prediction gives the estimates of
location displacement.

In the literature, there also exists a large group of studies
for predicting the transport mode using the Geolife GPS
trajectories datasets [2]. Sina et al. [10] proposed a Convo-
lutional Neural Network (CNN) architecture based prediction
mechanism for inferring transportation mode of user using
GPS trajectories. The transportation modes include walking,
biking, bus, driving and train. For the CNN the dataset is
preprocessed and a suitable representation of data is designed
where each data instance is composed of four features as
acceleration, jerk, speed and bearing rate.

The authors in [11] proposed a supervised learning approach
to predict the transportation mode of users using the Geolife
GPS data. The approach constitutes three steps as: firstly, GPS
trajectory data is divided into different segments of trans-
portation modes using the segmentation method. Secondly,
features are extracted from the dataset, and thirdly an inference

model is applied to classify the transportation modes using the
extracted features. Lastly, some graph-based post processing
algorithm is applied to improve a prediction performance.
In [12], authors proposed a transportation estimation model
based on Deep Neural Network (DNN) architecture. Firstly,
the raw trajectories are converted to images for input to the
neural network. Then features are extracted using the Stacked
Denoising Autoencoder (SDA) and lastly the transportation
mode is predicted using DNN.

In our previous work, a visitor’s prediction in the next
timestep for large events using the current distribution of
timestamps is proposed [3]. For this, a fog architecture collects
data, features are analyzed and then prediction is done using
classification algorithms and regression techniques such as
Random Forest (RF), K-nearest neighbor (KNN), Support
Vector Classifier (SVC), Naı̈ve Bayes (NB)/Kernel Ridge (KR)
and DL models. Next position prediction can be also done
using the LSTM model [5]. The proposed work consists
of three pipelines: the first is training, in which position
data are preprocessed as distance and bearing, then using
genetic algorithm hyperparameters they are optimized for the
neural network and they are inserted to knowledge base; the
second pipeline is transfer learning in which DL model is
retrieved from the knowledge base using similarity based
functions, transfer learning is performed and the final model is
concluded; the third pipeline is inference in which prediction
of next timestamp is performed.

In this paper, we also solve the problem of one-step-ahead
geo-location prediction with a LSTM approach. However, this
research is fundamentally different from previous methods
because we are proposing custom functions along with the
incremental learning approach. For instance, for the training
of neural network i.e., LSTM for urban mobility data, we
provided the custom geometric loss function. Furthermore,
for hyper tuning a neural network we present a modified GA
with new similarity function and stopping criterion. Lastly,
we apply an incremental learning approach for personalized
mobility prediction.

III. MOBILITY MODELING

In this paper, we examine one of the most interesting and
challenging mobility use cases which is the mobility in smart
cities. In this case, there are different types of transport means
such as taxi, bus, subway and walking. The different transport
means imply significantly different movement patterns and
statistical data properties. By analyzing smart cities mobility
data, we have observed that the average and the maximum
speed, the frequency of changing direction, the acceleration,
and the duration of remaining motionless in the same position
significantly differs based on the transport mean. LSTM-
RNNs satisfy the two important requirements of the mobility
modeling and forecasting, first the ability to generalize from
multiple different mobility data patterns and second to hold
information from previous steps in a look-back window.



A. Trajectory Modeling with Time Series and Distance Bear-
ing Transformation

The one-step-ahead geo-location prediction model can pro-
cess trajectories formalized as sequences of data observations
and apply a time series forecasting approach. Modern mobile
and IoT devices have built-in GPS receivers that periodically
record their geographical locations. A sequence of recorded
geo-locations in constant time intervals for a mobile entity
defines a trajectory. At the time-step tp a trajectory is de-
fined by the sequence of (latti , lonti){ti = 0..p} where t0
is the first position in the trajectory and tp is the current
position. Knowing a sub-sequence of the c previous positions
(latti , lonti){ti = 0..c} with c < p we can forecast the next
position (latti+1, lonti+1) as we can see in Fig. 1.

Fig. 1. One-step ahead Geo-location Forecasting

The LSTM-RNN follows a multi-variate, multi-output time
series approach with a look-back window of size p taking as
input a sequence of p lat and lon pairs and predicts the one-
step-ahead lat and lon.Before the input of the LSTM-RNN, we
apply a transformation of the lat and lon pairs into distance
and bearing pairs. Lat and lon represent a point’s distance
from the equator and the prime meridian accordingly and they
are measured in degrees and values between (- 90,90) and (-
180,180). In distance/bearing system, the distance is used as
the distance between the current and the previous geo-location
and the bearing is the clockwise angular movement between
the two positions.

Our previous research [5] has shown the advantage of using
distance and bearing instead of plain coordinates. Predicting
the next position, the network limits the search space in a way
similar to how a human mind would perceive that there is a
limited distance. This limited distance can be easily estimated
by either the previous measurements or velocity and timespan
until the next observation. The human is moving in a short time
period to a limited distance, putting much focus on trying to
estimate the next geo-location in a circle around the current
geo-location.

B. RNNs for Geo-location Prediction

Recurrent Neural Networks (RNNs) model learn from series
of observations arranged chronologically. RNN can capture
temporal dependencies in sequential observations and perform
tasks that require information from previous positions. As

such, RNN has shown great performance in learning spatial
and temporal patterns. In the problem formulation of the next
geo-location prediction, the objective of the RNN is to predict
the next-step distance and bearing with respect to the previous
locations of an input sequence.

RNNs learn from sequential observations and use the hidden
state that acts as the neural networks memory. The hidden state
holds information on the previous observations the network
has seen before. The hidden state is updated in every step
with the combination of current input and the previous hidden
state. The major limitation of the simple RNNs is that they
only remember a few earlier steps in the sequences because
of the gradient vanishing problem. This problem of RNN,
that are capable to capture and remember long sequences of
observations, is alleviated by the cell-state introduced in the
Long Short-Term Memory (LSTM) recurrent networks.

The vanishing gradient problem is the phenomenon of
small gradients updates during the training with the back-
propagation and makes all the RNN weights almost do not
change. LSTMs enhance the memorization through three gates
that regulate the flow of past information. Through the gates
forget, input, and output LSTMs regulate the cell state. The
cell state is the memory of the network that keeps and transfers
relative information all the way down the sequence chain.
These gates learn which data in a sequence is important
and pass the relevant information down the long chain of
sequences to make predictions. The LSTM can effectively
transfer information from the earlier time steps to later time
steps, reducing the effects of short-term memory.

C. Geometric Loss Function

The mobility prediction has geo-spatial characteristics that
we should use in the training of LSTM neural networks. The
next geo-location in our approach is represented with the
distance and bearing numerical values. Given the current lat
and lon and the distance - bearing LSTM predictions, we can
estimate the predicted next-step lat and lon. Thus, the LSTM
is a multi-output multivariate regression model that learns by
optimizing a loss function in distance-bearing data.

In order to adapt the training of the LSTM regression model
to the geo-spatial problem we propose a custom Geometric
Loss Function (GLF) instead of generic regression loss func-
tions such Mean Absolute Error (MAE) or Root Mean Squared
Error (RMSE). For instance, the RMSE measures of how
spread out the true data observations are than the predicted
ones and cannot capture correctly the angular distances. In
this case, if the predicted and the actual bearing are 0 and 359
degrees respectively the result would be a large loss value and
the RMSE will not capture that these bearing values are very
close. The GLF is given in Eq. 1 where dp is the predicted
distance, dt is the true distance, bp is the predicted bearing,
and bt is the true bearing.

GLF =
√
(dpcos(bp)− dtcos(bt))2 + (dpdin(bp)− dtsin(bt))2

(1)



IV. HYPERTUNING

The RNN training process comprises of the parameters and
the hyperparameters. The parameters are mostly the weights
and the biases between the layers. The parameters are learnable
by an optimizer which is based on a variation of the gradient
descent iterative method. The hyperparameters are the major
design decisions for a network topology and they belong in
two categories the structural and the training. The structural
hyperparameters defines the topology of the RNN, setting the
number of layers, the number of neurons for each layer, the
type of the activation functions and regularization values like
the dropout rate. The training hyperparameters define how
the learning process will take place in order to estimate the
parameters specifying the optimizer and the learning rate.

Hypertuning is the automated process for hyperparameter
selection of a DL model in order to minimize the loss of the
objective function and maximize the accuracy of the predic-
tions. Our goal is to take the human out of the learning method,
not to rely on the experience of domain experts, and spend the
minimum time and computational resources to build a neural
network following a systematic and smart search methodology.
Computational intelligence and population based algorithms
are superior to grid search and random search methods because
with a minimum number of trials achieve better accuracy,
balancing an exploitation vs. exploration trade off. This means
that instead of trying random hyperparameter combinations,
computation intelligence methods locate where are the optimal
until now solutions. They exploit the close to optimal areas and
try sporadically unexplored areas of the hypothesis space in
order to escape from local optima.

A. Neuro-Genetic Algorithm

A neural network is represented by a chromosome which
consists of genes. The genes are the structural and the training
hyperparameters. The genes can take a range of nominal or
numerical values defining a hypothesis space. As example the
gene of the number of dense layers is a numerical gene that
can take values from one to a hypothetical maximum number
of hidden layers. The gene of activation functions is a nominal
variable that encodes the type of activation functions such as
reLU, tanh, and sigmoid for a specific layer.

The first generation of the GA begins with a randomly
initialized population of neural networks also named chro-
mosomes in the evolutionary algorithm terminology. All the
neural networks of the generation are evaluated using the
geometric objective function described in the previous section.
The top neural networks are selected from the population
based on the objective function in order to ensure that only
the best fit solutions survive into the next generation. The
selected neural networks mate and create a set of offsprings
in a process called crossover. The vanilla GA for hypertuning
just recombines the selected neural networks and does not
take into consideration the discrepancies between the neural
networks. As example, a neural network with two hidden
layers should not be recombined with a neural network with

Fig. 2. Modified Genetic Algorithm

fifteen layers. The optimal activation functions from a two-
layer neural network may not be the optimal solution in a
fifteen-layer neural network. Different architectural compo-
nents contribute in a different way based on the context and
the topology they belong. This is the reason that we introduce
a similarity function to select the neural networks that match
to be combined.

After the crossover, the offsprings are mutated in order to
create a new set of chromosomes that will be inserted into
the population. We designed our GA to introduce in every
generation new chromosomes based on crossover and mutation
but we always keep the best chromosomes from the previous
generations. Thus, we can guarantee that if we find the best fit
solution early in the first generations, this solution will survive
until the end of the evolution and the optimization process
will converge. Once enough chromosomes have been inserted
to replace the worst fit chromosomes of the population, a
generation is said to have passed.

In every new generation the cycle of the evaluation, se-
lection, crossover, mutation, and insertion starts again. The
evaluation of the chromosomes is the most time consuming
and computational heavy process in every generation. The
training of a neural networks includes the iterative update
of thousand RNN parameters for many epochs. Because the
generations include a population of neural networks the GA
should narrow down the search space applying a criterion
to halt the training of chromosomes or continue it. This
motivated us to introduce an early stopping criterion in the
training of the candidate neural networks. The integration
of the early stopping criterion and the selection function
in the GA constitutes the Neuro-GA which is illustrated in
Fig.2 and they will be described in the next two subsections.
After a number of generations have elapsed, the hypertuning
process converges, stops and outputs the most close to optimal
chromosome. This chromosome also represents the most close



to optimal neural network based on the given mobility training
data set.

B. Early Stopping Criterion

Our proposed genetic algorithm includes an early stopping
criterion during the training of the neural networks. Doing so
we incorporate the advantage of the hyperband hypertuning
approach into every generation of the genetic algorithm. The
hyperband approach makes a tradeoff between n random
trials and b available computation resources. The core idea
is that the training begins with n random neural networks,
periodically evaluate their performance, discard the worse
performing and allocate the free computational resources to
the best performing.

Our hypertuning genetic algorithm begins in every genera-
tion with n neural networks binding b computational resources.
After p epochs we compare the accuracy of each neural
network, the neural networks of the current generation that
have better average performance than the neural networks
of the previous generation in the epoch p will continue the
training, while the rest will early stop. In this methodology,
we should mention that in the first generation we don’t apply
the early stopping criterion and in the last generation the
final solution is trained for more than 2p epochs, until the
validation error significantly surpasses the training error and
the overfitting begins.

C. Selection Function for Recombination

The crossover process is the most complicated process in
the genetic algorithm. In the crossover process the genes of
the two parents should be recombined and one new offspring
should be introduced in the population. In the generic design
of the genetic algorithms there is no restrictions in the recom-
bination of the best fit chromosomes, but the particularities of
the neural networks impose constraints on the hypertuning.

The genes of neural networks during the evolution process
are the structural and the training hyperparameters encoded
with vector representations. A similarity function can quantify
the similarity between two neural networks. A high similarity
value denotes that the chromosomes have a similar struc-
ture in their topology, they learn efficiently with the same
techniques, thus they have a good match to be recombined
together. We propose the cosine similarity for the numerical
hyperparameters and the Jaccard similarity for the nominal
hyperparameters. We selected these two because they are
monotonic on a range of values [0, 1] and their perfect match
corresponds to the value one. We also take into consideration
the accuracy of the two candidate neural networks. Eq. 2
defines our proposed selection metric function two neural
networks in a generation. The couples that have the highest
selection value will be recombined and their offsprings will
be inserted into the population of the next generation.

Select(n1, n2) = a · Structsim(n1, n2)+

b · Trainsim(n1, n2) + c ·Accuracy(n1, n2)
(2)

The selection metric is the sum of three equations, the
structure similarity, the training similarity and the accuracy.
These three parts contribute with different weights in the
selection metric with the parameters a, b and c to be in
the range of [0, 1] and their sum to one. In our experiments
we have tested different values of these parameters and we
conclude that a should be greater than c and c greater than b.

Structsim(n1, n2) =

∑n
i=1 n1i · n2i√∑n

i=1 n
2
1i ·

√∑n
i=1 n

2
2i

(3)

The structure similarity Eq. 3 is based on the cosine
similarity where n1 and n2 are the two candidate parents, n1i

and n2i are the i-th structural hyperparameters. The cosine
similarity is one of the most used functions to estimate the
similarity between numerical features in the domain of data
mining.

Trainsim(n1, n2) =
|n1

⋂
n2|

|n1

⋃
n2|

(4)

The training similarity Eq. 4 is based on the Jaccard index
and divides the intersection of their common nominal hyper-
parameters to the union. The Jaccard coefficient similarity
is also widely used in data mining for the comparison of
nominal data. The accuracy of the neural networks is the
vanilla selection criterion in the genetic hypertuning. Our
method should also favour the best fit neural networks to
be recombined. Thus, in the Eq. 5 we define that the mean
accuracy of the two candidate parents also contributes to
selection process.

Accuracy(n1, n2) =
accn1 + accn2

2
(5)

The selection metric based on the ANN genes improves the
exploitation of the genetic algorithm recombining the most
similar and accurate chromosomes. The exploitation, in a
smart search hypertuning process, declares that the evolution-
ary decisions are taken based on the best current information.
The evolution should not only be guided by the exploitation
of the most optimal solutions. It also needs a stochastic
component in order to avoid the local optima. In order to
explore very different areas of genes after the crossover the
neural networks are mutated with a Gaussian distribution in
the acceptable range of the hyperparamater values. Doing so
we can escape from local minima and explore new solutions
of the hypothesis space.

V. GENERIC VS. PERSONALIZED PREDICTION

In the methodology that we have described in the previous
sections, we input a bunch of thousands trajectories of different
mobility behaviours into the hypertuning algorithm and it
outputs the most close to optimal generic mobility model.
Then, the model provides predictions but it is never refit and
extends its knowledge based on the new incoming data. From
the other hand, personalised modelling and prediction concerns
methodologies for an incremental adaptation of the data-driven



TABLE I
EVALUATION AND COMPARISON OF THE LSTM NEURO-GENETIC ALGORITHM FOR MOBILITY PREDICTION

method unlabeled walk bus bike car taxi subway train time

AutoSKLearn 58,44 21,81 83,65 54,75 97,77 132,85 107,47 3779
XGBoost 48,20 21,11 76,43 51,05 77,56 116,00 89,60 10463
GA LSTM 50,95 21,86 70,64 50,98 81,72 108,79 79,69 8310
Neuro-GA LSTM 30,53 14,85 51,28 24,52 43,88 44,23 52,98 4729

Fig. 3. Personalised One Step ahead Prediction Model

models based on individually users mobility behaviours and
their new generated data. In a personalized modeling approach,
we can start with a generic model and periodically re-fit
and extend the models with new data observations as it is
illustrated in Fig 3.

This approach is inline with the modern mobile and IoT
devices with built-in GPS receivers that produce continu-
ously users geographical locations. The same devices can
also run the DL model that predict the next-step user geo-
locations. This means that in every time-step new tuples
(latpred, lonpred, lantrue, lontrue) with predicted and true
values are generated. These new on-device data can be used to
locally fine-tune the generic models. Doing so, we can improve
the accuracy of mobility prediction models for every individual
user based on his own mobility behaviours.

The mobile devices can run a light-weight retrain of the
generic mobility model with the on-device geo-location data.
The retrain should be light-weight because the users do not
want to spend their valuable mobile resources and battery to
extensive neural networks training and also the transfer of the
training on the Cloud would imply bandwidth consumption
and privacy issues. The retrain process includes local fine-
tune on the new batches of the sequences recorded by the
device with an adaptive learning rate that begins intensively
and gradually decays.

VI. EXPERIMENTAL EVALUATION

The proposed methodology has been implemented and ex-
perimentally evaluated in the Python 3 programming language
using the libraries NumPy, pandas, Scikit-learn, SciPy, GeoPy,
Scikit-Optimize, TensorFlow 2 and its higher-level API Keras.
The environment we used for the experiments is a Jupyter
notebook of the Google Colaboratory. The experiments’ source

code is available for any kind of reproduction and reex-
amination in the first author’s GitHub repository [13]. The
experiments took place with a real GPS trajectory dataset
publicly available by the Geolife project of Microsoft Research
Asia [2]. This trajectory dataset is appropriate for tasks like
mobility pattern mining, user activity recognition and location
recommendation and its 1.2GB size is sufficient an extensive
research analysis.

The GPS trajectory dataset contains 17,621 trajectories from
182 users with a total distance of about 1.2 million kilometers.
The dataset is constructed in a period of five years with a
total duration of 48,000+ hours. The GPS trajectories are
represented by sequences of time-stamped geo-locations, each
of which contains the information of latitude and longitude.
Most of the trajectories are logged every one to five seconds.
In the data preparation stage, we filtered the trajectories that
have not sufficient number of observations and the time-
steps have been aligned at a constant interval of 5 seconds.
The geo-locations are recorded by different GPS loggers and
GPS-phones of moving people. The people perform everyday
activities like go home, to work, entertainments and sports
activities, such as shopping, sightseeing, dining, hiking, and
cycling using different transport means.

A. Evaluation Methodology and Results

We split the dataset in nine separate groups of trajectories.
The first group is for the training of the prediction model and
the other eight trajectory groups are for the evaluation of the
prediction models. These eight evaluation groups are labeled
by the corresponding transport means: (a) walk, (b) bus, (c)
bike, (d) car , (e) taxi, (f) subway and there is also one (g)
unlabeled group that includes a mixture of trajectories by all
the previous transport means. We experimentally compared
our proposed model Neuro-GA, with our previous mobility
prediction model GA [3] and two popular auto-ml models the
AutoSKLearn and the XGBoost. The AutoSKLearn [14] is
based on an automated machine learning workflow including
the steps of pre-processing, regression, and hyper-parameter
tuning using a Bayesian optimization process. It also contains
a repository of previous optimization runs enabling training
from previous saved settings. The XGBoost [15] is a software
library that implements the ensemble learning approach of gra-
dient boosted decision trees. XGBoost has gained much pop-
ularity because it has won several data mining and knowledge
discovery competitions among them the prestigious Kaggle
and KDD Cup.



Before the fitting of the models we applied the distance-
bearing transformation described in the subsection 3.1. In
our experiments the time-step is 5 seconds, the look-back
window is a sequence of 15 steps and we predicted the next
geo-location after 25 seconds. We selected a time horizon
of 25 seconds because it has many practical applications in
transportation and edge computing use cases. In addition, the
largest amount of geo-locations in the dataset were recorded
every 5 seconds. As future work researchers can try different
values of time steps and size in the look-back window.

The training and the evaluation parts in our experiments
have an equal number of trajectories and each trajectory has
been used in its entirety. The evaluation parts also divided
in the above mentioned eight trajectory groups in order to
evaluate the accuracy of the models in each separate transport
mean and also in the mixed unlabeled group. This is impor-
tant because different transportation means have significantly
different statistical properties. In the initial exploratory data
analysis, we have seen that the average and max speed, the
frequency of changing direction and the duration of being
in the same position are significantly different based on the
transport mean. This is a reasonable outcome but it raises the
important question in the predictive data analysis, if the same
model can be the most accurate in all the trajectory groups.

The training of the model took place using trajectories from
all the transport means. Thus, we built a generic multivariate
LSTM-RNN model using the Neuro-GA with the similarity
function and the early stopping criterion described in section
4. In the evaluation stage, we saw the predictions of the LSTM-
RNN model to have different characteristics and average errors
based on the type of the transport mean of the trajectories.
This signifies that the LSTM-RNN model takes as input
the look-back window of the testing trajectory and regulates
its predictions respectively. When we made the analysis on
the predictions we saw that the maximum distance of the
predictions between the current and the predicted geo-location
is inside the limits of its transportation mean type. The same
also happens for the speed and the changing rate in the bearing.
As an example, in a testing walking trajectory the model never
predicts distances bigger than the distance can cover a moving
human in 25 seconds but, testing bus trajectories the predicted
distances are analogous to the bus moving patterns.

Our conclusion is that even if the mobility model is generic,
it can distinguish and provide predictions for each transport
mean without the explicit input of their type. The model can
adapt its predictions based on the data observations of the
look-back window. The results of the experiments are sum-
marized in the Table I. The columns with the transportation
means indicate the average errors in meters for each step
prediction in the next 25 seconds. The results show that in
all transport means the proposed model has significant better
results than the simple GA methodology and the two auto
machine learning models. Comparing the simple GA with the
Neuro-GA model we can see that the latter has significant
improvements in the accuracy and the training time. The
training time decreased from 8310 seconds to 4729 seconds

making an improvement of 43% and the error decreased in
a range from 27,4% to 52,98% in the different transport
means. The redesigned genetic hypertuning algorithm is more
efficient to manipulate the characteristics of the RNN archi-
tecture, learning behaviour and accuracy. In these significant
improvements also contributed the geometric loss function that
captures the peculiarities of the mobility data instead of a
generic loss function like RMSE. In addition we can see in the
last column of the Table I the computational time of training.
The computation time of the inference is not mentioned as it
has an order of magnitude of a few milliseconds in all cases.

B. Evaluation of the Neuro-Genetic Algorithm

Regarding the improvement of the early stopping criterion
we see in the Table. II the completion time of each generation
and the evolution in the accuracy between two consecutive
generations. The accuracy in each generation is represented
by the average value of the top half chromosomes of the
population. The reason is that in each generation there is
a percentage of chromosomes that have strong mutation in
order to insert a stochastic component in the offsprings. These
chromosomes are important because they make an exploration
in new areas of the hypothesis space in order to escape
from the local minima. The significant stochastic component
may provoke these chromosomes to end up to low accuracy
solutions. But, these chromosomes can be early detected with
an early stopping criterion and stop their training. Thus, in
the rows of Accuracy in the Table. II, we take the average
accuracy only of the top half chromosomes of the population
and we don’t take into consideration the chromosomes that
will not survive and be recombined.

In our experimental setup we used a population of twelve
DL models for ten generations. We made multiple runs with
different initialization in the first population of the chromo-
somes and in all cases we see that the accuracy of the fittest
solutions converges and does not have significant improvement
after the tenth generation. From the Table. II we see that the
early stopping criterion decreased the training time in all the
generations. The training time of each generation is defined
by the time duration it needs all the population. Giving the
computation resources from the worst fit solutions to the best
fit solutions we saw improvements in both the accuracy and the
training time. We also clarify that the accuracy improvements
declare the percentage of the improvement between the current
generation and the previous one. So, we don’t have values in
the column of the 1st generation. The second clarification we
must give is that the training and the hypertuning process is
stochastic. This is the reason that we didn’t see improvement
in the 9th generation but we had improvements in the 10th
generation. In the 9th generation not all the recombinations
and the mutations of the hyperparameters provided more
accurate solutions, but, the stochastic component is the cause
of slightly more accurate solutions in the 10th generation.



TABLE II
IMPROVEMENTS IN ACCURACY AND TRAINING TIME WITH THE NEURO-GENETIC ALGORITHM

1st gen 2nd gen 3rd gen 4th gen 5th gen 6th gen 7th gen 8th gen 9th gen 10th gen

GA Traintime 1956 615 1470 700 598 552 564 528 776 551
GA Accuracy - 0,1816 0,0487 0,0436 0,0123 0,0021 0,0006 0,0029 0,0019 0,0018
Neuro-GA Traintime 1164 532 413 311 361 465 292 477 367 347
Neuro-GA Accuracy - 0,2862 0,1812 0,0914 0,0038 0,1224 0,1188 0,0026 0,0000 0,0511

C. Testing a Simple Personalized Modelling

Personalized modeling and prediction with a lightweight
training on device can increase the accuracy of the predictions
and ensure user data privacy. Mobile devices record geo-
location sequences forming training mini-batches that can be
used for a periodical fine-tune of the RNN model. The mini-
batches include data observations with users mobility patterns
that can be used for the adaptation of a generic mobility model
to the specific users movement behaviours.

Fig. 4. Incremental Learning on Trajectory Data

In our experiments, we begun with a generic LSTM-RNN
model hyper-tuned and trained as described in the previous
sections. Then, we traversed different trajectories making
a re-train and evaluation in consecutive mini-batches. This
approach is based on the incremental learning methodology
that continuously extends a model with a continuous retraining
in the new incoming data. In the comparison of the original
generic model with the incremental learning approach, we
found out that in the first mini-batches the model accuracy is
not improved by the continuous learning but, as the training
batches increases the average error of the incremental learning
becomes consistently lower than the original model as we can
see in Fig. 4.

VII. CONCLUSIONS

The Neuro-Genetic algorithm combines the benefits of
evolutionary algorithms with the neural networks in order to
conclude to a close to optimal DL topology. Specifically this
study improves the LSTM-RNN approach for one-step-ahead
geo-location prediction. A geometric loss function was used
instead of common loss functions and a transformation of the
(lat, lon) sequences into distance-bearing was also applied in
order to leverage the particularities of spatio-temporal data.

To estimate the most close to optimal RNN architecture,
we proposed an improved genetic algorithm including an
early stopping criterion which determines whether to halt the
training or continue and a similarity function for optimal RNN
recombination. The experimental evaluation showed that the
proposed methodology surpasses in terms of accuracy previous
mobility prediction models and improves significantly the
training time.

In addition, we tried a personalised mobility modelling with
an incremental learning and fine-tuning approach. This is the
topic that our future research is focused. Incremental learning
can be further improved with more efficient techniques than
periodic re-fit. Specifically, we plan to investigate a drift mech-
anism that can understand if a user changes a transportation
mean and to apply different mobility models accordingly.
Lastly, we are interested in the design of an incremental
learning approach that addresses the catastrophic forgetting
problem preventing the new knowledge to erase permanently
what the model learnt in the past.
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