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ABSTRACT
Voice assistants have been shown to be vulnerable to replay attacks,
impersonation attacks and inaudible voice commands. Existing de-
fenses do not provide a practical solution as they either rely on
external hardware or work under very constrained settings. We
introduce a hand gesture-based authentication system for smart
home voice assistants called HandLock, which uses built-in mi-
crophones and speakers to generate and sense inaudible acoustic
signals to detect the presence of a known hand gesture. Our pro-
posed approach can act as a second-factor authentication (2-FA)
for performing specific sensitive operations like confirming online
purchases through voice assistants. The experiments involving 45
participants show that HandLock can achieve on average 96.51%
true-positive-rate at the expense of 0.82% false-acceptance-rate.

CCS CONCEPTS
• Security and privacy→ Usability in security and privacy.
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1 INTRODUCTION
Smart home voice assistants (VAs) like Amazon Echo and Google
Home thrive on the ability to enable users to interact with devices
and services through voice to not only listen to music and flash
briefings but also control other smart home appliances. However,
the widespread use of VAs also gives rise to both security and
privacy concerns due to their always-listening capability [4] and
susceptibility to audio-based attacks [6].

One of the major security concerns with current VAs is the
limited support for authentication. Other than simple, customizable
wake words like “Alexa” or “Hi, Google,” there is not much support
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Figure 1: Anatomy of hu-
man arm and hand.
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Figure 2: Device setup

for authentication in VAs. In recent years, several studies have
proposed authenticating users through microphones and speakers
embedded in smart devices [1, 8]. However, all of these schemes
require the sensing device (i.e., microphones or speakers) to be
placed very close to the user’s mouth or held by the user, which
does not amount to a practical solution for smart home VAs.

In this work, we introduce a gesture-based biometric authenti-
cation scheme called HandLock that can recognize an authorized
user based on his/her hand movement. To this end, HandLock emits
inaudible acoustic signals and records the reflected signals to iden-
tify a user. The underlying hypothesis for HandLock is that it is
possible to distinguish different users even if they perform the same
hand gesture due to their differing physical biometrics. Specifically,
as shown in the Figure 1, since the length of ulna and humerus
of a given user is fixed, the starting and ending positions of the
hand stay the same no matter how fast the user moves the hand.
Therefore, the speed profile of a given gesture from the same user
should remain similar as the speeds of different parts of the hand
and limb change proportionally. Theoretically, the phase change
that appears in the received acoustic signal is directly proportional
to the speed at which a human hand was moved while performing
a gesture. By combining our hypothesis with this theoretical result,
we make the following observation: the phase shift recorded on
the received acoustic signal is significantly different for different
users, even if they all perform the same hand gesture. Through
our evaluations, we see that our approach can be used not only to
determine the physical presence of a user but also as an effective
second-factor authentication method for VAs.

Table 1: Comparison with existing works.

Method TPR FAR Extra Hardware Device Free
WiID [5] 92.80% - WiFi transceiver Yes
VAuth [2] ≤97% 0.10% Wearable No
P2Auth [3] ≤99.55% 2.1% Wearable No
HandLock 96.51% 0.82% No Yes

To the best of our knowledge, we are the first to propose an
acoustic hand gesture-based 2-FA system for VAs. Our approach
is device-free and non-obtrusive. Table 1 highlights a comparison
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Figure 3: System overview.

with other existing VA authentication systems. HandLock achieves
similar effectiveness when compared with existing approaches.
However, unlike other approaches HandLock does not require any
additional hardware and operates device-free. Thus, our approach
is fully compatible with existing VAs.

2 SYSTEM DESIGN
2.1 System Overview
Figure 3 shows an overview of our proposed system, which consists
of five main components: signal sensing, signal processing, feature
extraction, user modeling, and verification. In the signal sensing
phase, as soon as the VA enters a sensitive operation such as con-
firming an online purchase, the embedded speaker of the VA device
prompts the user to perform a hand gesture and starts emitting and
recording inaudible continuous wave signal. The signal processing
phase uses a low pass filter to get the corresponding In-phase (I)
and Quadrature (Q) signals. Given that we can extract the acoustic
phase shift from the Q signal, which is less susceptible to noise, we
use the Q trace alone to extract features. Next, we use these features
to train machine learning (ML) classifiers. Lastly, HandLock uses
the developed ML classifier to distinguish a known user from a set
of unknown users.

2.2 Signal Preprocessing
To make our system unobtrusive, HandLock uses sound waves with
frequencies higher than 16 kHz, which are inaudible to most people
and supported by Commercial-Off-The-Shelf (COTS) voice assistant
devices. We transmit and record audio signals at 48 kHz. To ensure
there is no interference of Doppler shifts caused by two source
signals of varying frequencies, we use a frequency interval of 400
Hz. A transmitted signal arrives at the microphone from multiple
paths including the structure-borne path via the body of the device,
the Light-Of-Sight (LOS) propagation path via the air, and other
reflection paths by surrounding objects. Let us assume the phase of
the source signal (𝐴 cos 2𝜋 𝑓 𝑡 ) changes by 𝛿 due to the Doppler effect
caused by a hand movement. Let 2𝜋 𝑓 𝐷 (𝑡)/𝑐 represents the phase
delay (i.e., impact of multi-path) caused by the propagation delay
of 𝐷 (𝑡)/𝑐 , where 𝑐 is the speed of sound. The recorded inaudible
signal will then be𝐴′ cos (2𝜋 𝑓 𝑡 + 2𝜋 𝑓 𝐷 (𝑡)/𝑐 + 𝛿). Let 𝜙 represents
phase shift 2𝜋 𝑓 𝐷 (𝑡 )

𝑐 + 𝛿 , then the received signal can be simplified
using the equation shown below:

𝐴′ cos (2𝜋 𝑓 𝑡 + 𝜙) = 𝐼 cos 2𝜋 𝑓 𝑡 −𝑄 sin 2𝜋 𝑓 𝑡 (1)

The received signal is first multiplied with the transmitted signal
cos 2𝜋 𝑓 𝑡 and its phase-shifted version − sin 2𝜋 𝑓 𝑡 . We then use a
low pass filter (LPF) to filter out frequencies greater than 24 kHz
(i.e., the maximum possible frequency at 48 kHz sampling rate) and
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Figure 4: I/Q trace segment of a gesture sample and its phase change
based on Chord-based and Q-based approach.
get the corresponding desired 𝐼 and 𝑄 traces.

𝐼 = 𝐿𝑃𝐹 (2𝐴′ cos (2𝜋 𝑓 𝑡 + 𝜙)𝑐𝑜𝑠 (2𝜋 𝑓 𝑡)) = 𝐴′ cos𝜙 (2)

𝑄 = 𝐿𝑃𝐹 (−2𝐴′ cos (2𝜋 𝑓 𝑡 + 𝜙)𝑠𝑖𝑛(2𝜋 𝑓 𝑡)) = 𝐴′ sin𝜙 (3)

Limitations of prior works. Figure 4a highlights a short time
series of IQ traces. Prior work [7] approximates phase (𝜙) by con-
sidering small arcs (�𝑃𝑖𝑃𝑖+1) formed by two neighbouring IQ points
in a circle. Specifically, the chord length (𝐶ℎ𝑜𝑟𝑑𝑖 ) is proportional
to the angle formed by an arc when it is very small. The length of
chord between two neighbouring IQ points is calculated as:�𝑃𝑖𝑃𝑖+1 = √

(𝐼𝑖+1 − 𝐼𝑖 )2 + (𝑄𝑖+1 −𝑄𝑖 )2

= 2𝑅 sin(𝜙𝑖/2) ≈ 𝑅𝜙𝑖

(4)

where R is the radius of the circle IQ points form, and 𝜙 is the
central angle of the corresponding chord. Using Taylor’s series we
know sin𝜙 ≈ 𝜙 , when 𝜙 is small. Assuming 𝑅 is constant in a short
time interval, Δ𝐶ℎ𝑜𝑟𝑑𝑖 ≈ 𝑅(𝜙𝑖+1 − 𝜙𝑖 ) as shown in Eq. 5, which is
proportional to the phase change. We call this process Chord-based
phase extraction.

Δ𝐶ℎ𝑜𝑟𝑑𝑖 = ∥ �𝑃𝑖+1𝑃𝑖+2 − �𝑃𝑖𝑃𝑖+1∥ = ∥𝑅(𝜙𝑖+1 − 𝜙𝑖 )∥ (5)

𝑄𝑖+1 −𝑄𝑖 = 𝑄𝐷𝐶 +𝐴′ sin𝜙𝑖+1 − (𝑄𝐷𝐶 +𝐴′ sin𝜙𝑖 )

= 𝐴′(𝜙𝑖+1 − 𝜙𝑖 −
𝜙3
𝑖+1
3!

+
𝜙3
𝑖

3!
) = 𝐴′(𝜙𝑖+1 − 𝜙𝑖 )

= 𝐴′( 2𝜋 𝑓 𝐷 (𝑡)
𝑐

+ 𝛿𝑖+1 −
2𝜋 𝑓 𝐷 (𝑡)

𝑐
− 𝛿𝑖 )

= 𝐴′(𝛿𝑖+1 − 𝛿𝑖 )

(6)

Our approach. As 𝑄 = 𝐴′ sin𝜙 , the phase shift can be extracted
from the 𝑄 trace alone as shown in the Eq. 6. Our approach is not
dependent on approximating the value of 𝑅, and at the same time
removes the DC offset and reduces the impact of multipath propa-
gation (eliminating both𝑄𝐷𝐶 and 2𝜋 𝑓 𝐷 (𝑡 )

𝑐 ). Figure 4b contrasts the
Chord-based and our Q-based approach of approximating phase
change. In our approach, phase change can, therefore, be repre-
sented by 𝜃𝑖 = ∥𝛿𝑖+1 − 𝛿𝑖 ∥ = ∥(𝑄𝑖+1 −𝑄𝑖 )/𝐴′∥. As 𝐴′ is constant,
𝜃𝑖 is proportional to ∥𝑄𝑖+1 −𝑄𝑖 ∥.
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2.3 Feature Extraction
The hand speed is proportional to the relative phase change 𝜃𝑖 ,
which can be derived from Eq. 6. Therefore, we consider 𝜃𝑖 as
the relative speed of the hand movement. As the amplitude 𝐴′ is
constant, we weighted two acceleration readings to calculate the
average acceleration.

𝐴𝑐𝑐𝑖 =
𝜃𝑖+1 − 𝜃𝑖 + 𝜃𝑖+2−𝜃𝑖

2
2

(7)

Feature Vector. We extract temporal and spectral features from
both the speed and acceleration time series. First, we compute
8 single-valued features for both speed and acceleration includ-
ing Mean, Median, RMS, STD, MAD, 10th percentile, 90th percentile,
and median frequency. To gain more fine-grained insights into the
change in speed and acceleration, we split each gesture segment
into 20 equal-sized chunks and calculate RMS, STD,MAD andMean
from each chuck. To extract the spectral features like power spec-
tral density (PSD) from speed and acceleration, we apply FFT on
each time-series data, then perform max-min normalization on the
power of all frequencies. Onward, we segment the PSD values into
20 small chunks and calculate the mean value from each chunk.
Similarly, we compute the signal auto-correlation coefficient of
speed and acceleration, and normalize the auto-correlation coeffi-
cient; we then segment the normalized coefficient into 20 chunks
and compute the mean value from each chunk. In total, we extract
256 features from both the speed and acceleration time-series data.

3 EXPERIMENTAL RESULTS
As current commercial VAs are not allowed to log raw audio, we
implement HandLock using a Seeed’s ReSpeaker Core V2.0 (shown
in Figure 2). The board is equipped with a six microphone array —
similar to how microphones are distributed inside an Amazon Echo
Dot. We wire it to an external 3W speaker AS07104PO-LW152-R.
and use a 3D-printed casing to hold the microphone array and
speaker. Next, we obtained the necessary IRB approval to hire 45
participants to interact with our prototype VA located inside a
lab space. We randomly split the 45 participants into 39 benign
users and 6 attackers. For evaluation purposes we consider five
popular gestures: ‘𝑍 ’, ‘𝑊 ’, ‘𝑋 ’, ‘✓’ and ‘9’. Participants performed
their hand gestures anywhere in the range of 5 ∼ 30 𝑐𝑚 from our
prototype VA. We collected 60 samples for each of the five gestures
for each participant. We randomly select 30 samples out of the 60
samples per gesture from each user as the training set and use the
remaining 30 samples as the test set. We randomly label 5 users’
data as negative class and one out of the remaining 34 users’ data
as positive class.

We adopt Adaptive Synthetic Sampling (ADASYN) method to
upsample the positive class instances. We use random forest (RF)

Table 2: Perf. of RF with imbalanced/balanced dataset.

Gesture FRR FAR Precision Recall F-Score

𝑍 4.86/3.71 1.35/0.76 98.62/99.26 95.14/96.29 96.85/97.69
𝑊 6.19/3.14 1.05/1.05 98.90/98.95 93.81/96.86 96.29/97.83
𝑋 4.95/4.10 2.14/1.90 97.84/98.17 95.05/95.90 96.43/96.90
✓ 6.10/3.14 0.96/0.29 99.00/99.70 93.90/96.86 96.3898.22
9 5.33/3.33 0.19/0.10 99.80/99.91 94.67/96.67 97.17/98.20

Avg. 5.49/3.49 1.14/0.82 99.82/99.20 94.51/96.51 96.62/97.77

learning to perform cross-user (i.e. 34 users) evaluation. Table 2
presents the overall performance of HandLock . After balancing the
positive class, the false rejection rate (FRR) decreased from 5.49%
to 3.49% and F-Score improved from 96.62% to 97.77%, while the
average false acceptance rate (FAR) decreased from 1.14% to 0.82%.
We also evaluate six attackers who individually mimic the gesture
of a given victim for all five gestures. The average FAR for ‘𝑍 ’,
‘𝑊 ’, ‘𝑋 ’, ‘✓’, and ‘9’ gesture is 6.2%, 3.6%, 5.14%, 3.62%, and 3.52%,
respectively.

To evaluate the impact of ambient noise, we set up our device one
meter away from a TV broadcasting news with a sound pressure
of 80 dB. Three participants were asked to perform 20 samples of
‘𝑍 ’ gesture. We observe that the background noise is below 15 kHz.
Under this setting the average true positive rate (TPR) is 95.10%.
Compared to the reference TPR of 96.29% (see Table 2) we can see
that the ambient background noise typically found at homes does
not significantly impact our system.

4 CONCLUSION AND FUTUREWORK
In this work, we showcased a new modality of the acoustic signal-
based 2-FA system for smart home voice assistants, calledHandLock,
which extracts unique movement characteristics of a user’s hand
gesture. The result showed that it can achieve an average TPR of
96.51% across 34 users while the FAR is 0.82%. The accuracy might
decrease with a larger population. However, in a smart home with
limited inhabitants, we believe the approach is still feasible. We
believe this simple yet effective 2-FA approach is a first step towards
helping consumers better protect sensitive operations carried out
by VAs. In the future, we plan to extensively evaluate HandLock to
enable user identification from gestures at longer distances.
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