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Abstract. In an outsourced database framework, clients place data
management with specialized service providers. Of essential concern in
such frameworks is data privacy. Potential clients are reluctant to out-
source sensitive data to a foreign party without strong privacy assur-
ances beyond policy “fine–prints”. In this paper we introduce a mecha-
nism for executing general binary JOIN operations (for predicates that
satisfy certain properties) in an outsourced relational database frame-
work with full computational privacy and low overheads – a first, to the
best of our knowledge. We illustrate via a set of relevant instances of
JOIN predicates, including: range and equality (e.g., for geographical
data), Hamming distance (e.g., for DNA matching) and semantics (i.e.,
in health-care scenarios – mapping antibiotics to bacteria). We experi-
mentally evaluate the main overhead components and show they are rea-
sonable. For example, the initial client computation overhead for 100000
data items is around 5 minutes. Moreover, our privacy mechanisms can
sustain theoretical throughputs of over 30 million predicate evaluations
per second, even for an un-optimized OpenSSL based implementation.

1 Introduction

Outsourcing the “database as a service” [24] emerged as an affordable data
management model for parties (“data owners”) with limited abilities to host and
support large in-house data centers of potentially significant resource footprint.
In this model a client outsources its data management to a database service
provider which provides online access mechanisms for querying and managing
the hosted data sets.

Because most of the data management and query execution load is incurred
by the service provider and not by the client, this is intuitively advantageous
and significantly more affordable for parties with less experience, resources or
trained man-power. Compared with e.g., a small company, with likely a minimal
expertize in data management, such a database service provider intuitively has
the advantage of expertize consolidation. More-over it is likely to be able to
offer the service much cheaper, with increased service availability and uptime
guarantees.
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CNS 0845192, IIS 0803197, and by CA Technologies, Xerox, IBM and Microsoft.



Significant security issues are associated with such “outsourced database”
frameworks, including communication-layer security and data confidentiality.
Confidentiality alone can be achieved by encrypting the outsourced content.
Once encrypted however, the data cannot be easily processed by the server.
This limits the applicability of outsourcing, as the type of processing primitives
available will be reduced dramatically.

Thus, it is important to provide mechanisms for server-side data processing
that allow both confidentiality and a sufficient level of query expressibility. This
is particularly relevant in relational settings. Recently, protocols for equijoin and
range queries have been proposed [34, 35, 33].

Here we go one step further and provide low overhead solutions for general
binary JOIN predicates that satisfy certain properties: for any value in the con-
sidered data domain, the number of corresponding “matching” pair values (for
which the predicate holds) is upper bound. We call these finite match predicates
(FMPs).

Such predicates are extremely common and useful, including any discrete
data scenarios, such as ranges, inventory and company asset data sets, forensics,
genome and DNA data (e.g., fuzzy and exact Hamming distances), and health-
care databases (e.g., bacteria to antibiotics matches). Moreover, at the expense
of additional client-side processing (pruning of false positives) other predicate
types (multi-argument, continuous data) can be accommodated.

While on somewhat orthogonal dimensions, it might be worth noting that
other important challenges are to be considered in the framework of database
outsourcing. Transport layer security is important as eavesdropping of data ac-
cess primitives is unacceptable. This can be achieved by deploying existing tra-
ditional network security protocols such as IPSec/SSL. Moreover, query correct-
ness issues such as authentication and completeness are important and have been
previously considered.

The main contributions of this paper include: (i) the proposal and definition
of the problem of private joins for generalized query predicates, (ii) a solution
for FMPs, (iii) its analysis, (iv) a proof-of-concept implementation and (v) the
experimental evaluation thereof.

The paper is structured as follows. Section 2 introduces the main system, data
and adversary models. Section 3 overviews, details and analyzes our solution.
Section 4 discusses predicate instance examples and the handling thereof. Section
5 introduces our proof-of-concept implementation and provides an experimental
analysis thereof. Section 6 surveys related work and Section 7 concludes.

2 Model

We choose to keep the data outsourcing model concise yet representative. Sen-
sitive data is placed by a client on a database server situated at the site and
under the control of a database service provider. Later, the client can access the
outsourced data through an online query interface exposed by the server. Net-
work layer confidentiality is assured by mechanisms such as SSL/IPSec. This



corresponds to a unified client model [14, 33]. Clients would like to allow the
server to process data queries while maintaining data confidentiality. For this
purpose, they will encrypt data before outsourcing. As encrypted data is hard
to process without revealing it, to allow for more expressive server-side data pro-
cessing, clients will also pre-process data according to a set of supported (join)
predicates. They will then outsource additional associated metadata to aid the
server in processing tasks. This metadata, however, will still be “locked” until
such processing tasks are requested by the client.

Later, to allow server – side data processing, the client will provide certain
“unlocking” information for the metadata associated with the accessed items.
The server will perform exactly the considered query (and nothing more) without
finding out any additional information.

It is important for the outsourced metadata not to reveal any information
about the original data. Additionally, the computation, storage and network
transfer overheads should maintain the cost advantages of outsourcing, e.g., ex-
ecution times should not increase significantly. We consider a relational model,
where we consider the outsourced data as a set of t data columns (e.g., rela-
tional attributes), D stored on the server. Let n be the average number of values
stored in a column and b be the number of bits in the representation of a value.
Naturally, we allow relations to contain variable number of tuples. We use this
notation for analysis purposes only.

Finite Match Predicates (FMPs). In this paper we consider binary pred-
icates p : X × Y → B = {true, false} for which the “match sets” P (x) :=
{y|p(x, y) = true} can be computed efficiently and their size (taken over all
encountered values of x) upper bound. In other words, given a certain value x
in the considered data domain, its “matching” values are easily determined and
their number is upper bound. We call these predicates finite match predicates
(FMPs). We call the number of matching values maximum match size (MMS).
For instance, consider the following discrete time – range join query that joins
arrivals with departures within the same 30 mins interval (e.g., in a train sta-
tion):

SELECT * FROM arrivals,departures

WHERE ABS(arrivals.time - departures.time) > 30

In this example, the FMP has an MMS of 60.

Privacy Requirements. In the considered adversarial setting, the following
privacy requirements are of concern.

Initial Confidentiality. The server should not be able to evaluate inter-
column (join) predicates on the initially received data without (“un-lock”) per-
mission from the client.

Predicate Safety. The server should not be able to evaluate predicates on
“unlocked” data. This also implies that no additional information should be
leaked in the process of predicate evaluation. For instance, allowing the evalua-
tion of predicate p(x, y) := (|x − y| < 100), should not reveal |x − y|.

We stress that here we do not provide confidentiality of predicates, but rather
just of the underlying target data. We also note that we do not consider here



the ability of the server to use out of band information and general knowledge
about the data sets to infer what the underlying data and the query results look
like. In fact we envision a more formal definition in which privacy guarantees do
not allow any leaks to the server beyond exactly such inferences that the curious
server may do on its own based on outside information.

Performance Constraints. The main performance constraint we are inter-
ested in is maintaining the applicability of outsourcing. In particular, if a con-
sidered query load is more efficient (than client processing) in the unsecured
data outsourcing model – then it should still be more efficient in the secured
version. We believe this constraint is essential, as it is important to identify so-
lutions that validate in real life. There exist a large number of apparently more
elegant cryptographic primitives that could be deployed that would fail this con-
straint. In particular, experimental results indicate that predicate evaluations on
the server should not involve any expensive (large modulus) modular arithmetic
such as exponentiation or multiplication. We resisted the (largely impractical)
trend (found in existing research) to use homomorphisms in server side oper-
ations, which would have simplified the mechanisms in theory but would have
failed in practice due to extremely poor performance, beyond usability.

supported by recent findings that show the total cost of storage management
is orders of magnitude higher than the initial storage equipment acquisition costs
[17].

Adversary. We consider an honest but curious server: given the possibility to
get away undetected, it will attempt to compromise data confidentiality (e.g.,
in the process of query execution). The protocols in this paper are protecting
mainly data confidentiality. The server can certainly choose to deny service by
explicitly not cooperating with its clients, e.g., by not returning results or simply
closing connections.

2.1 Tools

Encryption, Hashing and Random numbers. We consider ideal, collision-
free hashes and strongly un-forgeable signatures. While, for reference purposes
we benchmark RC4 and AES in section 5, we will not be more specific with
respect to its nature and strength as it is out of scope here. We note that our
solution does not depend on any specific encryption mechanism. We will denote
by EK(v) the encryption of value v with key secret key K. If not specified, the
key K will be implicitly secret and known only to the client. In the following,
we use the notation x →֒R S to denote x’s uniformly random choice from S.

Bloom Filters. Bloom filters [8] offer a compact representation of a set of data
items, allowing for fast set inclusion tests. Bloom filters are one-way, in that,
the “contained” set items cannot be enumerated easily (unless they are drawn
from a finite, small space). Succinctly, a Bloom filter can be viewed as a string
of l bits, initially all set to 0. To insert a certain element x, the filter sets to 1
the bit values at index positions H1(x), H2(x), . . . , Hh(x), where H1, H2, . . . , Hh



are a set of h crypto-hashes. Testing set inclusion for a value x is done by
checking that the bits for all bit positions H1(x), H2(x), . . . , Hh(x) are set. By
construction, Bloom filters feature a controllable rate of false positives (pfp) for
set inclusion tests. For a certain number N of inserted elements, there exists a
relationship that determines the optimal number of hash functions ho minimizing
pfp: ho = l

N ln 2 ≈ 0.7 l
N which yields a false positive probability of pfp =

(

1
2

)ho
=

(

1
2

)
l

N
ln 2

≈ 0.62l/N For a Bloom filter BF , we denote BF.insert(v) the
insertion operation and BF.contains(v) the set inclusion test (returning true if
it contains value v, false otherwise).

For an excellent survey on applications on Bloom filters and their applications
in a variety of network problems please see [10].

Computational Intractability Assumptions. Let G be a finite field of size
p prime and order q and let g be a generator for G. The Computational Diffie-
Hellman assumption (CDH) [21]:

Definition 1 (CDH Assumption) given g, ga mod p and gb mod p, for a, b ∈ Zq,
it is computationally intractable to compute the value gab mod p.

In the same cyclic group G, the Discrete Logarithm assumption (DL):

Definition 2 (DL Assumption) given g, v ∈ G, it is intractable to find r ∈ Zq

such that v = gr mod p.

3 Outsourced JOINs with Privacy

We define the arbitrary (non hard-coded to a specific application) predicate join
solution to be a quadruple (predFM , G, E, J), where predFM is the FMP, G
is a parameter generation function, E is a data pre-processing function and J
denotes a joining function according to predicate predFM . G and E are executed
by the client and the output of E is outsourced to the server. J is executed by the
server on two attributes of the client’s data. In this section we provide a general
description of the G, E and J functions and in Section 4 we study two predicate
and corresponding G, E and J function instances. In Figure 1 we summarize the
symbols used in our solution.

p prime number
N bit size of p
G subgroup of Zp

q order of G

g generator of G

xA, yA secret values for column A

Fig. 1. Symbol Table.

G is a parameter generation oper-
ation executed initially by the client.
Its input is N , a security parameter
and t, the number of columns in the
client database D. Let p = 2p′+1 be a
N bit long prime, such that p′ is also
prime. The reason for this choice is
to make the CDH assumption harder.
Let G = Zp be a group of order q,
with a generator g.



G(N, t). Generates an encryption key
K →֒R {0, 1}∗. For each column A ∈ D, generate two values xA, yA →֒R Zq,
xA 6= yA. Publish p and g and keep secret the key K and the values xA and yA,
for all columns A ∈ D.

E is executed by the client, after running G. It takes as input a column
A ∈ D, the key K and the secret values xA and yA corresponding to column A.

E(A, K, xA, yA). Associate with each element ai ∈ A, i = 1..n a Bloom filter de-
noted BF (ai), with all the bits initially set to 0. Let P (ai) = {v|predFM (ai, v) =
true} be the set of values that satisfy the predicate predFM for element ai. For
each ai ∈ A, encrypt ai with the key K, producing EK(ai) and compute an “ob-
fuscation” of ai, O(ai) = H(ai)xA mod q. Then, ∀v ∈ P (ai), compute eA(v) =
gH(v)yA mod p and insert them into ai’s Bloom filter (BF (ai).insert(eA(v))).
Finally, output the values EK(ai), O(ai) and BF (ai). Let DT denote the output
of E for all the columns in D. The client stores DT on the server. Hence, element
ai ∈ A is stored on the server as DT (A, i) = [EK(ai), O(ai), BF (ai)].

We now describe the join operation, J , executed by the server. J takes as
input two column names A, B, a desired predicate predFM and a trapdoor value
(computed and sent by the client) rAB = gyA/xB mod p and outputs the result
of the join of the two columns on the predicate.

J(A, B, predFM , rAB). For each element bj ∈ B, compute eA(bj) = r
O(bj)
AB mod p.

For each element ai ∈ A, iff. BF (ai).contains(eA(bj)) return the tuple 〈EK(ai), EK(bj)〉.

In real life, J will output also any additional attributes specified in the SE-
LECT clause, but for simplicity we explicit here and in the following only the
join attributes.

Properties We now list the security properties of this solution, whose proofs
will be included in an extended version of the paper.

Theorem 1. (Correctness) The join algorithm J returns all matching tuples.

Theorem 2. The (predFM , G, E, J) solution satisfies the initial confidentiality
requirement outlined in Section 2.

Theorem 3. (predFM , G, E, J) is predicate safe.

Notes on Transitivity. Under certain circumstances the server may use our
solution to perform transitive joins. That is, provided with information to join
A with B and later to join B with C, it can join A and C. We make the
observation that on certain FMPs any solution will allow the server to perform
partial transitive joins, using the outcome of previous joins. That is, when an
element b ∈ B has matched an element a ∈ A and an element c ∈ C, the server
can infer that with a certain probability a also matches c. In conclusion, we
believe the transitive join problem to be less stringent than reducing server-side
storage and computation overheads.



Same-column Duplicate Leaks. In the case of duplicate values occurring in
the same data column, a data distribution leak can be identified. The determin-
istic nature of the obfuscation step in the definition of E associates the same
obfuscated values to duplicates of a value. Upon encountering two entries with
the same obfuscated value, the server indeed can infer that the two entries are
identical. We first note that if joins are performed on primary keys this leak
does not occur. Additionally, it is likely that in many applications this is not
of concern. Nevertheless, a solution can be provided, particularly suited for the
case when the number of expected duplicates can be upper bound by a small
value (e.g., m). The deterministic nature of O(ai) is required to enable future
Bloom filter lookups in the process of predicate evaluation. However, as long as
the predicate evaluation is designed with awareness of this, each duplicate can
be replaced by a unique value. This can be achieved by (i) populating Bloom
filters with multiple different “variants” for each value expected to occur multi-
ple times, and (ii) replacing each duplicate instance with one of these variants
instead of the actual value. These variants can be constructed for example by
padding each value with different log2(m) bits.

Bloom Filter Sizes. In the case of a join, the false positive rate of Bloom filters
implies that a small percentage of the resulting joined tuples do not match the
predicate the join has been executed for. These tuples will then be pruned by
the client. Thus, a trade-off between storage overhead and rate of false positives
(and associated additional network traffic) emerges. For example, for a predicate
MMS = N = 60 (e.g., in the simple query in Section 2), a desired false positive
rate of no more than pfp = 0.8%, the equations from Section 2.1 can be used to
determine one optimal setup l = 600 and h = 7.

Data Updates and Multiple Clients. In data outsourcing scenarios, it is
important to handle data updates incrementally, with minimal overheads. In
particular, any update should not require the client to re-parse the outsourced
data sets in their entirety. The solution handles data updates naturally. For any
new incoming data item, the client’s pre-processing function E can be executed
per-item and its results simply forwarded to the server. Additionally, in the case
of a multi-threaded server, multiple clients (sharing secrets and keys) can access
the same data store simultaneously.

Complex, Multi-predicate Queries. Multiple predicate evaluations can be
accommodated naturally. Confidentiality can be provided for the attributes in-
volved in binary FMPs. For example, in the following database schema, the
association between patients and diseases is confidential but any other informa-
tion is public and can be used in joins. To return a list of Manhattan-located
patient names and their antibiotics (but not their disease) the server will access
both confidential (disease) and non-confidential (name,zip-code) values.

SELECT patients.name,antibiotics.name

FROM patients,antibiotics



WHERE md(patients.disease,antibiotics.name)

AND patients.zipcode = 10128

Only the predicate md() will utilize the private evaluation support. This will
be achieved as discussed above, by encrypting the patients.disease attribute
and generating metadata for the antibiotics relation (which contains a list of
diseases that each antibiotic is recommended for).

4 Predicate Instances

To illustrate, we choose to detail two predicate instances: a simple, range join and
a Hamming distance predicate requiring custom predicate-specific extensions.

4.1 Range JOIN

Consider the binary FMP p(x, y) := (v1 ≤ (x − y) ≤ v2) where x, y ∈ Z. An
instance of this predicate is the following travel agency query, allocating buses
to trips, ensuring 5 (but no more than 10) last-minute empty slots per trip:

SELECT buses.name,trips.name

FROM buses,trips

WHERE (buses.capacity-trips.participants) >= 5

AND (buses.capacity-trips.participants) <= 10

Executing such a query remotely with privacy can be achieved efficiently
by deploying the solution presented in Section 3. The parameter generation
algorithm, G and the join algorithm J will be the same. As above, the data
encoding algorithm encodes in the Bloom filter BF (ai) of element ai all integer
values in P (ai) := {y|p(ai, y) = true} namely with values ∈ [x−v2, x−v1]. Note
that given the size of the range, n and a fixed probability of false positives, pfp,

we have that the optimum Bloom filter size is l = −
n ln pfp

(ln 2)2 .

4.2 Hamming JOIN

It is often important to be able to evaluate Hamming distance on remote data
with privacy in un-trusted environments. This has applications in forensics, crim-
inal investigation (e.g. fingerprints), biological DNA sequence matching, etc.

Let x and y be b bit long strings and let 0 < d < b be an integer value.
We use dH(x, y) to denote the Hamming distance of x and y. We consider the
join predicate predFM (x, y) := (dH(x, y) ≤ d). An example is the following
fingerprint matching query that retrieves the names and last dates of entry for
all individuals with physical fingerprints (in some binary representation) close
enough to the ones of suspects on the current FBI watch list:

SELECT watchlist.name,

immigration.name,

immigration.date



FROM watchlist,immigration

WHERE Hamming(watchlist.fingerprint,

immigration.fingerprint)<5

A private execution of this join operation can be deployed using the solution
introduced in Section 3. The implementation of the Hamming part of the pred-
icate requires specific adjustments. In particular, in pre-processing, the client
pseudo-randomly bit-wise permutes all the data elements consistently. It then
splits each data element into β equal sized blocks, where β is an input parame-
ter discussed later. Then, for each such block, it generates three data items: one
item will allow later private comparisons with other blocks for equality (Ham-
ming distance 0). The other two (a Bloom filter and a “locked” obfuscated value)
will be used by the server to identify (with privacy) blocks at Hamming distance
1. In the following we describe the (dH , GH , EH , JH) solution, as an extension
of the solution presented in Section 3.

The parameter generator, GH , takes two additional parameters, β and b. b
is the bit length of elements from D and β is the number of blocks into which
each data element is split. We assume β > d is constant, much smaller than
the number of elements stored in a database column. Possible values for β are
investigated later in this section.

GH(N,t,β,b). Choose a value s →֒R {0, 1}∗ and generate a secret pseudo-
random permutation π : {0, 1}b → {0, 1}b. For each data column A ∈ D 3, com-
pute sA = H(s, A). Use sA to seed a pseudo-random number generator PRG. Use
PRG to generate 3β secret, duplicate-free pseudo-random values xA(1), .., xA(β),
yA(1), .., yA(β), zA(1), .., zA(β) →֒R Zq.

EH(A, K, xA(k), yA(k), zA(k)), k = 1..β, A ∈ D. For each element ai, i = 1..n
of A, compute ai’s bit-wise permutation π(ai), then split π(ai) into β blocks of
equal bit length, ai1, .., aiβ . For each block aik, k = 1..β, generate an obfuscated
value O(aik) = H(aik)xA(k) mod q. Then, create aik’s Bloom filter by generating
all values v for which dH(aik, v) = 1. That is, generate all values with Hamming
distance 1 from block aik. For each value v, let ek

A(v) = gH(v)yA(k) mod p.
Encode ek

A(v) into aik’s Bloom filter, using operation BF (aik).insert(eA)k(v)).
Compute an additional structure allowing the server to assess (with privacy)
equality of the kth block of ai with the kth blocks of other values, Z(aik) =
H(aik)zA(k) mod q. Finally, output [EK(ai), O(aik), Z(aik), BF (aik)], for all
k = 1..β. Hence element ai is stored on the server as a tuple DT (A, i) =
[EK(ai), O(aik), Z(aik), BF (aik)], similar to the solution in Section 3.

To join two columns A and B on predicate predFM , JH receives the following
3β trapdoor values from the client (3 for each block) (i) rA(k) = gRk/zA(k) mod p,
(ii) rB(k) = gRk/zB(k) mod p and (iii) rk = gyA(k)/xB(k) mod p, for k = 1..β,
where Rk →֒R {0, 1}∗ (generated at the client side).

3
A here is the column’s unique server-side name.



JH(A, B, rA(k), rB(k), rk), k = 1..β. For each element ai from A and for each
k = 1..β, compute v(aik) = rA(k)Z(aik) mod p. For each element bj from B
and for each k = 1..β, compute v(bjk) = rB(k)Z(bjk) mod p. For each element
bj ∈ B and each element ai ∈ A, set counter c to 0. For each k = 1..β, if

BF (aik).contains(r
O(bjk)
k ) then do c = c + 1 and k = k + 1. Else, if v(aik) =

v(bjk), do k = k + 1. Otherwise, move to the next element, ai+1, from A. If at
the end of the k loop, c < d, return 〈EK(ai), EK(bj)〉. Else, move to the next
element from A, ai+1.

Note that for future query purposes the client does not need to remember
the values (xA(k), yA(k), zA(k)) for each column A. Instead, it generates them
by seeding its PRG with sA. For this, the client only needs to store one value, s.

Theorem 4. Any given pair of elements from A and B at Hamming distance
less than or equal to d is found with probability at least e−d/β(1 + d

β ).

Arbitrary Alphabets. The above solution can also be deployed for an arbi-
trary alphabet, that is, when the elements stored in the database D are composed
of symbols from multi-bit alphabets (e.g., DNA sequences). This can be done
by deploying a custom binary coding step. Let A = {α0, .., αu−1} be an alpha-
bet of u symbols. In the pre-processing phase, the client represents each symbol
over u bits (u/ logu-fold blowup in storage), such that symbol αu = 2i. That is,
dH(αi, αj) is 1 if i 6= j and 0 otherwise. If each data item has b symbols, each of
the item’s blocks will have bu/β bits, and, due to the coding, pairs of elements
of symbol-wise distance d will have a 2d bit-wise Hamming distance. Thus, after
the coding phase, the above algorithm can be deployed without change. As an
example, for an alphabet of 4 symbols {A,C,G,T}, the following encoding will
be used {A=0001,C=0010,G=0100,T=1000}. To compare the strings ACG and
ACT (alphabet distance 2), the following two binary strings will be compared
instead: 000100100100 and 000100101000 (binary Hamming distance 2).

5 Experimental Results

Implementation Details. We conducted our experiments using a C/C++ im-
plementation of the private predicate join algorithms, on 3.2GHz Intel Pentium 4
processors with 1GB of RAM running Linux. We implemented the cryptographic
primitives using OpenSSL 0.9.7a. Our goal was to investigate the feasibility of
the algorithms in terms of computation, communication and storage overheads,
both on the client and the server side.

To understand the costs of encryption and hashing, we have evaluated several
symmetric encryption and crypto-hashing algorithms. In our setup we bench-
marked RC4 at just bellow 80MB/sec, and MD5 to of up to 150MB/sec, shown
in Figure 2(a). We also benchmarked integer hashing throughput at more than
1.1 million MD5 hashes per second, showing the “startup” cost of hashing.

As recommended by the Wassenaar Arrangement [31], we set N , the size of
the prime p to be 512 bits and the size of the prime q to be 160 bits. From
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Fig. 2. Overheads of cryptographic operations.

our benchmarks, shown in Figure 2(b), we have concluded that 512-bit modular
exponentiations (with 160 bit exponents) take 274usec while 512-bit modular
multiplications take only 687nsec.

We have considered three types of applications for the private join algorithms.
In a first application we used SNPs ( single nucleotide polymorphisms ) from
a human DNA database [2]. An SNP is a variation of a DNA sequence that
differs from the original sequence in a single position. The goal of a join is to
identify all pairs of sequences from two columns, that differ in a single position.
To achieve this, the Bloom filter of a DNA sequence contains all the sequence’s
SNPs. Since SNPs from [2] have 25 nucleotides, each from the set A, T, C, or
G, a Bloom filter stores 75 values (MMS=75). Our second application performs
fingerprint matching, that is, identifying similar pairs of fingerprints. We have
used fingerprint data from [1] where each fingerprint consists of 100 features.
For this application we considered only fingerprints that differ in at most one
feature to be a match, thus, Bloom filters store 100 values (MMS=100). The
last application identifies picture similarities, using digital images from the La-
belMe [40] and Caltech 101 [16] databases. A set of images are annotated with
scores for lightness, hue or colors of interest [15, 19]. The Bloom filter associated
with an image contains score ranges of interest, which for this application was
set to 100 values around the image’s score (MMS=100). To compare two images
for similarity, the score of one image is searched in the Bloom filter associated
with the other image.

Client Computation Overheads. We now describe our investigation of the
initial client pre-processing step. Of interest were first the computation overheads
involved in generating the encryption, obfuscation and Bloom filter components
associated with a database of 100000 elements of 16 bytes each. We experi-
mented with four combinations of encryption algorithms (RC4 and AES) and
hashing algorithms (MD5 and SHA1), in a scenario where Bloom filters store
75 items each. Figure 3(a) depicts our results (log scale time axis). For each
encryption/hash algorithm combination shown on the x axis, the left hand bar
is the encryption cost, the middle bar is the Bloom filter generation cost and



the right hand bar is the obfuscation cost. Our experiments show the dominance
of the Bloom filter generation, a factor of 30 over the combined encryption and
obfuscation costs. The total computation cost of each implementation is roughly
320 seconds with the minimum being achieved by RC4/MD5. We further in-
vestigated the RC4/MD5 combination by increasing the MMS value from 10 to
100. Figure 3(b) shows that the pre-processing overhead increase is linear in the
MMS value. The total costs range between 40 seconds (MMS=10) and 7 minutes
(MMS=100). We stress that this cost is incurred by the client only once, when
computing the initial data structures.
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Fig. 3. Client computation overheads.

Server Computation Costs. In order to evaluate the performance of the
private join algorithm we used columns of 10000 images each, collected from the
LabelMe [40] and Caltech 101 [16] databases. For each image we deployed 1024-
bit Bloom filters (h = 12 hashes) with MMS=75. The join operation returns
all pairs of images that have scores within a given range of each other. In our
implementation, for each element from one column we perform a 512-bit modular
exponentiation with a 160 bit modulus, followed by a crypto-hash, fragment the
result into 12 parts and use each part as a bit position into each of the Bloom
filters associated with the elements of the other column.

As, to the best of our knowledge no other solutions exist for arbitrary private
joins on encrypted data, we chose to compare our solution against a hypotheti-
cal scenario which would use the homomorphic properties of certain encryption
schemes such as Paillier [38]. This comparison is motivated by recent related
work (e.g., [18]) that deploy this approach to answer SUM and AVG aggrega-
tion queries on encrypted data. Moreover, we also considered the cost of solutions
that would use RSA encryptions or decryptions to perform private joins.

Figure 4(a) compares our solution against (i) CP , that performs one modular
multiplication within the Paillier cryptosystem with a 1024-bit modulus, for
every two elements that need to be compared, (ii) Cenc, that uses one 1024-
bit RSA encryption for each comparison and (iii) Cdec, that uses one 1024-
bit RSA decryption operation. The y axis represents the time in logarithmic
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Fig. 4. (a) Join costs for columns of 10000 elements. Our solution is 2-4 orders of
magnitude faster than other solutions that use 1024-bit modular operations. (b) Bloom
filter storage overhead as percentage of the size of the cleartext data. The overhead is
42% for SNP databases, but under 3% for fingerprint or image databases.

scale. The first bar shows the performance of our FMP join algorithm. The cost
is dominated by 108 × 12 verifications of Bloom filter bit values (the cost of
computing 104 hashes and exponentiations (modulo a 512-bit prime) is under
3.5s). With a 21.3s computation overhead, the FMP join solution performs two
orders of magnitude faster than CP (second bar) taking 1525s, three orders
of magnitude faster than Cenc (third bar), taking 19168s and four orders of
magnitude faster than Cdec (fourth bar), taking 408163s. One reason for the
large overhead of the modular multiplications in the Paillier system (used also
in [18]) is the fact that while the modulus n has 1024 bits, the multiplications
are actually performed in the space Z∗

n2 . That is, the active modulus has 2048
bits. Using less than 1024 bits for n is not recommended [3, 31].

Storage Overhead. Since we use symmetric encryption algorithms, the size
of the E values stored on the server is roughly the same as the original size
of the elements – thus no significant overhead over stioring the cleartext data.
The size of the O value for each element is N = 512 bits, which is small and
data-independent. Finally, Figure 4(b) shows the overhead of the 1024 bit Bloom
filters as a percentage of the size of the original data. The largest overhead is
42%, for the SNP database, due to the smaller size of SNPs. However, for image
databases, the overhead is under 3% and for fingerprints is under 1%.

Transfer Overhead. We have measured the communication overhead of the
initial database transfer between sites located in Chicago and New York, more
than a thousand miles apart. With the bottleneck being the uplink capacity
of the client, of around 3 Mbps, the overhead of transferring the Bloom filters
associated with 100000 items was roughly 32 seconds.



6 Related Work

Extensive research has focused on various aspects of DBMS security and privacy,
including access control and general information security issues [5, 4, 6, 7, 12, 13,
25, 26, 28, 29, 32, 36, 37, 39, 41]. Statistical and Hippocratic databases aim to ad-
dress the problem of allowing aggregate queries on confidential data (stored on
trusted servers) without leaks [4, 5, 12, 13, 30]. Hacigumus et al.[23] introduced a
method for executing SQL queries over partly obfuscated outsourced data. The
data is divided into secret partitions and queries over the original data can be
rewritten in terms of the resulting partition identifiers; the server can then partly
perform queries directly. The information leaked to the server is 1-out-of-s where
s is the partition size. This balances a trade-off between client and server-side
processing, as a function of the data segment size. At one extreme, privacy is
completely compromised (small segment sizes) but client processing is minimal.
At the other extreme, a high level of privacy can be attained at the expense
of the client processing the queries in their entirety. Similarly, Hore et al. [27]
deployed data partitioning to build “almost”-private indexes on attributes con-
sidered sensitive. An untrusted server is then able to execute “obfuscated range
queries with minimal information leakage”. An associated privacy-utility trade-
off for the index is discussed.

Ge and Zdonik [18] have proposed the use of a secure modern homomor-
phic encryption scheme, to perform private SUM and AVG aggregate queries
on encrypted data. Since a simple solution of encrypting only one value in an
encryption block is highly inefficient, the authors propose a solution for ma-
nipulating multiple data values in large encryption blocks. Such manipulation
handles complex and realistic scenarios such as predicates in queries, compres-
sion of data, overflows, and more complex numeric data types (float), etc. In
Section 5 we show that the overhead of the operations used in [18] is very large,
exceeding the overhead of FMP joins by three orders of magnitude.

The problem of searching on encrypted data has also been studied extensively.
Song et al. [42] introduced an elegant solution that uses only simple crypto-
graphic primitives. Chang and Mitzenmacher [11] proposed a solution where the
server stores an obfuscated keyword index which is then used by the client to per-
form the actual searches. Golle et al. [22] provide a solution with the additional
feature of allowing conjunctive keyword searches. In a similar context Boneh et
al. [9] proposed the notion of “public key encryption with keyword search”. They
devised two solutions, one using bilinear maps and one using trapdoor permuta-
tions. While ensuring keyword secrecy, these techniques do not prevent servers
from building searched keyword statistics and inferring sensitive information.

Goh [20] proposed the notion of “secure index” – a data structure associated
with a file. The secure index is stored on a remote server and allows clients to
privately query an item into the file. The operation can be performed only if
the clients have knowledge of a particular trapdoor value. The construction of
a secure index uses pseudo-random functions and Bloom filters. This solution
requires knowledge of the trapdoor associated with the searched item. Thus,
secure indexes are insufficient to provide private joins on outsourced data.



7 Conclusions

In this paper we introduced mechanisms for executing JOIN operations on out-
sourced relational data with full computational privacy and low overheads. The
solution is not hard-coded for specific JOIN predicates (e.g., equijoin) but rather
works for a large set of predicates satisfying certain properties. We evaluated its
main overhead components experimentally and showed that we can perform
more over 5 million private FMPs per second, which is between two and four or-
ders of magnitude faster than alternatives that would use asymmetric encryption
algorithms with homomorphic properties to achieve privacy.
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