机载雷达空时自适应处理技术研究综述

谢文冲 段克清 王永良

谢文冲, 段克清, 王永良. 机载雷达空时自适应处理技术研究综述[J]. 雷达学报, 2017, 6(6): 575-586. doi: 10.12000/JR17073
引用本文: 谢文冲, 段克清, 王永良. 机载雷达空时自适应处理技术研究综述[J]. 雷达学报, 2017, 6(6): 575-586. doi: 10.12000/JR17073
Xie Wenchong, Duan Keqing, Wang Yongliang. Space Time Adaptive Processing Technique for Airborne Radar: An Overview of Its Development and Prospects[J]. Journal of Radars, 2017, 6(6): 575-586. doi: 10.12000/JR17073
Citation: Xie Wenchong, Duan Keqing, Wang Yongliang. Space Time Adaptive Processing Technique for Airborne Radar: An Overview of Its Development and Prospects[J]. Journal of Radars, 2017, 6(6): 575-586. doi: 10.12000/JR17073

机载雷达空时自适应处理技术研究综述

DOI: 10.12000/JR17073
基金项目: 国家自然科学基金(61501506)
详细信息
    作者简介:

    谢文冲(1978–),男,山西万荣人,2006年获国防科技大学信号与信息处理专业博士学位,现为空军预警学院雷达兵器运用工程军队重点实验室副教授。获国家技术发明二等奖和军队科技进步一等奖各1项(排名2、4),授权国防发明专利25项,获软件著作权1项,在IEEE Trans. SP、IET RSN、SP和中国科学等期刊与会议上发表论文100余篇(SCI收录29篇)。IEEE会员,中国电子学会青年科学家俱乐部会员,空军高层次科技人才,武汉市优秀科技工作者。研究方向包括空时自适应处理、机载雷达信号处理和雷达目标检测等

    段克清(1981–),男,河北石家庄人,2010年获国防科技大学信号与信息处理专业博士学位,现为空军预警学院雷达兵器运用工程军队重点实验室讲师。在Signal Processing、中国科学和电子学报等期刊与会议上发表论文40余篇。研究方向包括空时自适应处理、机载雷达信号处理等

    王永良(1965–),男,浙江嘉兴人,中国科学院院士,空军预警学院教授、博士生导师。主要研究方向包括空时自适应处理、雷达信号处理和阵列信号处理等

    通讯作者:

    谢文冲   xwch1978@aliyun.com

Space Time Adaptive Processing Technique for Airborne Radar: An Overview of Its Development and Prospects

Funds: The National Natural Science Foundation of China (61501506)
  • 摘要:

    空时自适应处理(Space Time Adaptive Processing, STAP)技术通过空域和时域2维联合自适应滤波的方式,实现了机载雷达对强杂波与干扰的有效抑制。作为提升机载雷达性能的一项关键技术,近年来备受雷达领域的关注与世界军事强国的重视。该文从方法、实验系统和应用3个方面回顾了空时自适应处理技术的发展过程和研究现状,着重阐述了其发展过程中遇到的关键技术问题,介绍了STAP技术在装备上的应用情况,并讨论了下一步的发展趋势,提出了需要或值得进一步研究的方向。

     

  • 表  1  典型STAP方法

    Table  1.   Typical STAP methods

    序号 关键技术问题 典型STAP方法
    1 运算量和误差问题 降维STAP方法
    降秩STAP方法
    2 非均匀杂波问题 功率非均匀抑制法
    非均匀检测器
    直接数据域法
    模型参数化STAP方法
    知识辅助STAP方法
    稀疏恢复STAP方法
    混合STAP方法
    3 非平稳杂波问题 1维补偿类方法
    2维补偿类方法
    空时内插类方法
    权值调整类方法
    逆协方差矩阵预测类方法
    3D-STAP方法
    4 空时自适应检测问题 基于GLRT准则的STAD
    基于Rao准则的STAD
    基于Wald准则的STAD
    下载: 导出CSV

    表  2  国内外典型STAP实时处理系统

    Table  2.   Typical STAP real-time processing systems at home and abroad

    时间(年) 国家 机构 STAP系统
    1994 中国 西安电子科技大学 机载预警雷达实验系统,由大约100片DSP21060/ADSP21062构成
    1996 美国 MHPCC(Maui High Performance Computer Center) MIT 采用IBM超级计算机SP2,主要用于处理Mountain Top实测数据
    1996 美国 AFRL MCARM实验系统:L波段,28个Paragon处理节点
    2000 美国 Raytheon UESA (UHF Electronically Scanned Array)计划,UHF频段电扫阵列,主要用于预警机雷达升级改造试验
    2002 美国 MIT KASSPER项目,基于知识辅助的机载雷达实验验证
    2004 美国 AFRL 自组织智能雷达系统AIRS,将人工智能与知识辅助相结合的新一代雷达
    2005 美国 AFRL 无人机联合侦察与作战计划,充分运用了KASSPER和AIRS实验的成果
    2006 中国 空军预警学院 机载雷达通用可编程STAP系统,实现了三/四通道机载预警雷达实测数据的实时处理
    2008 英国 QinetiQ Malvern PACER (Phased Array Concepts Evaluation RIG)雷达原理样机,32个自适应接收通道
    2012 中国 中国电科集团公司14所/38所 多通道机载预警雷达STAP系统
    下载: 导出CSV
  • [1] Brennan L E and Reed I S. Theory of adaptive radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 1973, AES-9(2): 237–252. DOI: 10.1109/TAES.1973.309792
    [2] Klemm R. Space-Time Adaptive Processing: Principles and Applications[M]. Stevenage, UK: IEE Publishers, 1998.
    [3] 王永良, 彭应宁. 空时自适应信号处理[M]. 北京: 清华大学出版社, 2000.

    Wang Y L and Peng Y N. Space-Time Adaptive Processing[M]. Beijing: Tsinghua University Press, 2000.
    [4] Klemm R. Principles of Space-Time Adaptive Processing[M]. Second Edition, Stevenage, Herts., UK: IEE Publishers, 2002.
    [5] Guerci J R. Space-Time Adaptive Processing for Radar[M]. Boston: Artech House, 2003.
    [6] Klemm R. Applications of Space-Time Adaptive Processing[M]. London: IEE Publishers, 2004.
    [7] Klemm R. Principles of Space-Time Adaptive Processing[M]. Third edition, London, UK: IEE Publishers, 2006.
    [8] Ward J. Space-time adaptive processing for airborne radar[R]. No. 1015. London: MIT Lincoln Laboratory, 1994.
    [9] Melvin W L. Space-time adaptive processing and adaptive arrays: Special collection of papers[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(2): 508–509. DOI: 10.1109/7.845233
    [10] Klemm R. Special issue on space-time adaptive processing (STAP)[J]. Electronics & Communications Engineering Journal, 1999, 11(1): 2.
    [11] Rangaswamy M. An overview of space-time adaptive processing for radar[C]. Proceedings of IEEE International Conference on Radar, Adelaide, Australia, 2003: 45–50.
    [12] Melvin W L. A STAP overview[J]. IEEE Aerospace and Electronic Systems Magazine, 2004, 19(1/2): 19–35.
    [13] Wicks M C, Rangaswamy M, Adve R, et al. Space-time adaptive processing: A knowledge-based perspective for airborne radar[J]. IEEE Signal Processing Magazine, 2006, 23(1): 51–65. DOI: 10.1109/MSP.2006.1593337
    [14] Greve S, Ries P, Lapierre F, et al. Framework and taxonomy for radar space-time adaptive processing (STAP) methods[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3): 1084–1099. DOI: 10.1109/TAES.2007.4383596
    [15] 王永良, 李天泉. 机载雷达空时自适应信号处理技术回顾与展望[J]. 中国电子科学研究院学报, 2008, 3(3): 271–275, 296. DOI: 10.3969/j.issn.1673-5692.2008.03.010

    Wang Y L and Li T Q. Overview and outlook of space time adaptive signal processing for airborne radar[J]. Journal of CAEIT, 2008, 3(3): 271–275, 296. DOI: 10.3969/j.issn.1673-5692.2008.03.010
    [16] Maher J, Callahan M, and Lynch D. Effects of clutter modeling in evaluating STAP processing for space-based radars[C]. Proceedings of the Record of the IEEE 2000 International Radar Conference, Alexandria, VA, 2000: 565–570.
    [17] Lesturgie M. Use of STAP techniques to enhance the detection of slow targets in shipborne HFSWR[C]. Proceedings of International Radar Conference, Adelaide, Australia, 2003: 504–509.
    [18] Ender J H G. Space-time processing for multichannel synthetic aperture radar[J]. Electronics&Communications Engineering Journal, 1999, 11(1): 29–38.
    [19] Paulraj A J and Lindskog E. Taxonomy of space-time processing for wireless networks[J]. IEE Proceedings-Radar,Sonar and Navigation, 1998, 145(1): 25–31. DOI: 10.1049/ip-rsn:19981807
    [20] Fante R L and Vaccaro J J. Wideband cancellation of interference in a GPS receive array[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(2): 549–564. DOI: 10.1109/7.845241
    [21] Brennan L E, Mallett J D, and Reed I S. Adaptive arrays in airborne MTI radar[J]. IEEE Transactions on Antennas and Propagation, 1976, 24(5): 607–615. DOI: 10.1109/TAP.1976.1141412
    [22] Titi W G. An overview of the ARPA/NAVY mountaintop program[C]. Proceedings of IEEE Adaptive Antenna Systems Symposium, Melville, NY, 1994.
    [23] Suresh Babu, Torres J A, and Melvin W L. Processing and evaluation of multichannel airborne radar measurements (MCARM) measured data[C]. Proceedings of IEEE International Symposium on Phased Array Systems and Technology, Boston, MA, 1996: 395–399.
    [24] Schrader G E. The knowledge aided sensor signal processing and expert reasoning (KASSPER) real-time signal processing architecture[C]. Proceedings of IEEE Radar Conference, Philadelphia, PA, USA, 2004: 394–397.
    [25] Klemm R. Adaptive airborne MTI: An auxiliary channel approach[J]. IEE Proceedings F Communications,Radar and Signal Processing, 1987, 134(3): 269–276. DOI: 10.1049/ip-f-1.1987.0054
    [26] 保铮, 廖桂生, 吴仁彪, 等. 相控阵机载雷达杂波抑制的时-空二维自适应滤波[J]. 电子学报, 1993, 21(9): 1–7

    Bao Z, Liao G S, Wu R B, et al. 2-D temporal-spatial adaptive clutter suppression for phased array airborne radars[J]. Acta Electronica Sinica, 1993, 21(9): 1–7
    [27] Wang Y L, Peng Y N, and Bao Z. Space-time adaptive processing for airborne radar with various array orientation[J]. IEE Proceedings Radar,Sonar Navigation, 1997, 144(6): 330–340.
    [28] Dipietro R C. Extended factored space-time processing for airborne radar systems[C]. Proceedings of the 26th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 1992, 1: 425–430.
    [29] Wang H and Cai L J. On adaptive spatial-temporal processing for airborne surveillance radar systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3): 660–670. DOI: 10.1109/7.303737
    [30] Brown R D, Wicks M C, Zhang Y, et al.. A space-time adaptive processing approach for improved performance and affordability[C]. Proceedings of IEEE National Radar Conference, Ann Arbor, MI, 1996: 321–326.
    [31] Wang Y L, Chen J W, Bao Z, et al. Robust space-time adaptive processing for airborne radar in nonhomogeneous clutter environments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(1): 71–81.
    [32] Klemm R. Adaptive clutter suppression for airborne phased array radar[J]. IEE Proceedings H-Microwaves,Optics and Antennas, 1983, 130(1): 125–132. DOI: 10.1049/ip-h-1.1983.0021
    [33] Brennan L E and Staudaher F M. Subclutter visibility demonstration[R]. RL-TR-92-21, Adaptive Sensors Incorporated, 1992.
    [34] Haimovich A M and Berin M. Eigenanalysis-based space-time adaptive radar: Performance analysis[J].IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(4): 1170–1179. DOI: 10.1109/7.625104
    [35] Goldstein J S and Reed I S. Reduced-rank adaptive filtering[J]. IEEE Transactions on Signal Processing, 1997, 45(2): 492–496.
    [36] 张良. 机载相控阵雷达降维STAP研究[D]. [博士论文], 西安电子科技大学, 1999.

    Zhang L. Study of reduced-rank STAP for airborne phased array radar[D]. [Ph.D. dissertation], Xidian University, 1999.
    [37] Rabideau D J and Steinhardt A O. Improved adaptive clutter cancellation through data-adaptive training[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(3): 879–891. DOI: 10.1109/7.784058
    [38] Kogon S M and Zatman M A. STAP adaptive weight training using phase and power selection criteria[C]. Proceedings of the 35th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 2001, 1: 98–102.
    [39] Melvin W L, Wicks M C, and Brown R D. Assessment of multichannel airborne radar measurements for analysis and design of space-time processing architectures and algorithms[C]. Proceedings of IEEE National Radar Conference, Ann Arbor, Michigan, 1996: 130–135.
    [40] Adve R S, Hale T B, and Wicks M C. Transform domain localized processing using measured steering vectors and non-homogeneity detection[C]. Proceedings of the Record of the 1999 IEEE Radar Conference, Boston, MA, 1999: 285–290.
    [41] Wicks M C, Melvin W L, and Chen P. An efficient architecture for nonhomogeneity detection in space-time adaptive processing airborne early warning radar[C]. Proceedings of (Conf. Publ. No. 449) Radar 97, Edinburgh, UK, 1997: 295–299.
    [42] 吴洪, 王永良, 陈建文. 基于频心法的STAP非均匀检测器[J]. 系统工程与电子技术, 2008, 30(4): 606–608. DOI: 10.3321/j.issn:1001-506X.2008.04.005

    Wu H, Wang Y L, and Chen J W. Nonhomogeneous detector for STAP based on spectral center frequency method[J]. Systems Engineering and Electronics, 2008, 30(4): 606–608. DOI: 10.3321/j.issn:1001-506X.2008.04.005
    [43] Sarkar T K, Wang H, Park S, et al. A deterministic least-squares approach to space-time adaptive processing (STAP)[J]. IEEE Transactions on Antennas and Propagation, 2001, 49(1): 91–103. DOI: 10.1109/8.910535
    [44] Roman J R, Rangaswamy M, Davis D W, et al. Parametric adaptive matched filter for airborne radar applications[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(2): 677–692.
    [45] Parker P and Swindlehurst A. Space-time autoregressive filtering for matched subspace STAP[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(2): 510–520.
    [46] Wang P, Li H B, and Himed B. Knowledge-aided parametric tests for multichannel adaptive signal detection[J]. IEEE Transactions on Signal Processing, 2011, 59(12): 5970–5982.
    [47] 段克清, 谢文冲, 高飞, 等. 基于杂波自由度的STAR模型参数估计方法[J]. 信号处理, 2009, 25(11): 1715–1718. DOI: 10.3969/j.issn.1003-0530.2009.11.010

    Duan K Q, Xie W C, Gao F, et al. Parameters estimation method for STAR model based on clutter degree of freedom[J]. Signal Processing, 2009, 25(11): 1715–1718. DOI: 10.3969/j.issn.1003-0530.2009.11.010
    [48] Guerci J R and Baranoski E J. Knowledge-aided adaptive radar at DARPA: An overview[J]. IEEE Signal Processing Magazine, 2006, 23(1): 41–50.
    [49] Melvin W L and Guerci J R. Knowledge-aided signal processing: A new paradigm for radar and other advanced sensors[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(3): 983–996.
    [50] Melvin W L and Showman G A. An approach to knowledge-aided covariance estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(3): 1021–1042.
    [51] Xie W C, Duan K Q, Gao F, et al. Clutter suppression for airborne phased radar with conformal arrays by least squares estimation[J]. Signal Processing, 2011, 91(7): 1665–1669.
    [52] Maria S and Fuchs J J. Application of the global matched filter to STAP data an efficient algorithmic approach[C]. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Toulouse, 2006: 14–19.
    [53] Sun K, Meng H D, Wang Y L, et al. Direct data domain STAP using sparse representation of clutter spectrum[J]. Signal Processing, 2011, 91(9): 2222–2236.
    [54] Yang Z C, Rodrigo C. de Lamare, and Li X. L1-regularized STAP algorithms with a generalized sidelobe canceler architecture for airborne radar[J]. IEEE Transactions on Signal Processing, 2012, 60(2): 674–686.
    [55] Ma Z Q, Liu Y M, Meng H D, et al.. Jointly Sparse recovery of multiple snapshots in STAP[C]. Proceedings of IEEE Radar Conference, Ottawa, ON, 2013: 1–4.
    [56] 王泽涛, 段克清, 谢文冲, 等. 基于SA-MUSIC理论的联合稀疏恢复STAP算法[J]. 电子学报, 2015, 43(5): 846–853. DOI: 10.3969/j.issn.0372-2112.2015.05.003

    Wang Z T, Duan K Q, Xie W C, et al. A joint sparse recovery STAP method based on SA-MUSIC[J]. Acta Electronica Sinica, 2015, 43(5): 846–853. DOI: 10.3969/j.issn.0372-2112.2015.05.003
    [57] Adve R S, Hale T B, and Wicks M C. Practical joint domain localised adaptive processing in homogeneous and nonhomogeneous environments. Part 2: Nonhomogeneous environments[J]. IEE Proceedings-Radar,Sonar and Navigation, 2000, 147(2): 66–74.
    [58] Aboutanios E and Mulgrew B. Hybrid detection approach for STAP in heterogeneous clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3): 1021–1033.
    [59] Gerlach K and Picciolo M L. Robust STAP using reiterative censoring[C]. Proceedings of IEEE Radar Conference, Huntsville, AL, 2003: 244–251.
    [60] Shackelford A K, Gerlach K, and Blunt S D. Partially adaptive STAP using the FRACTA algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(1): 58–69.
    [61] Blunt S D, Gerlach K, and Rangaswamy M. STAP using knowledge-aided covariance estimation and the FRACTA algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(3): 1043–1057. DOI: 10.1109/TAES.2006.248197
    [62] Borsari G K. Mitigating effects on STAP processing caused by an inclined array[C]. Proceedings of IEEE Radar Conference, Dallas, TX, 1998: 135–140.
    [63] 魏进武, 王永良, 陈建文. 双基地机载预警雷达空时自适应处理方法[J]. 电子学报, 2001, 29(S1): 1936–1939. DOI: 10.3321/j.issn:0372-2112.2001.z1.051

    Wei J W, Wang Y L, and Chen J W. Space-time adaptive processing approaches to bistatic airborne early warning radar[J]. Acta Electronica Sinica, 2001, 29(S1): 1936–1939. DOI: 10.3321/j.issn:0372-2112.2001.z1.051
    [64] Pearson F and Borsari G K. Simulation and analysis of adaptive interference suppression for bistatic surveillance radars[C]. Proceedings of the Adaptive Sensor Array Processing Workshop, Lexington, MA, 2001.
    [65] Himed B, Zhang Y H, and Hajjari A. STAP with angle-Doppler compensation for bistatic airborne radar[C]. Proceedings of IEEE Radar Conference, Long Beach, CA, 2002: 311–317.
    [66] Jaffer A and Ho P T. Adaptive angle-Doppler compensation techniques for bistatic STAP radars[R]. AFRL-SN-RS-TR-2005-398, AFRL, 2005.
    [67] Lapierre F D, Verly J G, and Van Droogenbroeck M V. New solutions to the problem of range dependence in bistatic STAP radars[C]. Proceedings of IEEE Radar Conference, Huntsville, AL, USA, 2003: 452–459.
    [68] Lapierre F D and Verly J G. Registration-based solutions to the range-dependence problem in radar STAP[C]. Proceedings of the 11th Adaptive Sensor Array Processing Workshop, Lexington, MA, 2003: 1–6.
    [69] Xie W C, Zhang B H, Wang Y L, et al. Range ambiguity clutter suppression for bistatic STAP radar[J]. EURASIP Journal on Advances in Signal Processing, 2013, 2013(75): 1–13. DOI: 10.1186/1687-6180-2013-13
    [70] Friedlander B. The MVDR beamformer for circular arrays[C]. Proceedings of the 34th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 2000: 25–29.
    [71] Varadarajan V and Krolik J L. Joint space-time interpolation for distorted linear and bistatic array geometries[J]. IEEE Transactions on Signal Processing, 2006, 56(3): 848–860.
    [72] 彭晓瑞, 谢文冲, 王永良. 一种基于空时内插的双基地机载雷达杂波抑制方法[J]. 电子与信息学报, 2010, 32(7): 1697–1702. DOI: 10.3724/SP.J.1146.2009.00975

    Peng X R, Xie W C, and Wang Y L. Improved joint space-time interpolation technique for bistatic airborne radar[J]. Journal of Electronics&Information Technology, 2010, 32(7): 1697–1702. DOI: 10.3724/SP.J.1146.2009.00975
    [73] Zatman M. Circular array STAP[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(2): 510–517. DOI: 10.1109/7.845235
    [74] 王万林. 非均匀环境下的相控阵机载雷达STAP研究[D]. [博士论文], 西安电子科技大学, 2004.

    Wang W L. Study on STAP for phased array airborne radar in nonhomogeneous environment[D]. [Ph.D. dissertation], Xidian University, 2004.
    [75] Lim C H and Mulgrew B. Prediction of inverse covariance matrix (PICM) sequences for STAP[J]. IEEE Signal Processing Letters, 2006, 13(4): 236–239. DOI: 10.1109/LSP.2005.863654
    [76] Lim C H, See C M S, and Mulgrew B. Non-linear prediction of inverse covariance matrix for STAP[C]. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Honolulu, HI, 2007: II-921–II-924.
    [77] 高飞, 谢文冲, 王永良. 非均匀杂波环境3D-STAP方法研究[J]. 电子学报, 2009, 37(4): 868–872. DOI: 10.3321/j.issn:0372-2112.2009.04.036

    Gao F, Xie W C, and Wang Y L. Research on 3D-STAP methods in non-stationary clutter[J]. Acta Electronica Sinica, 2009, 37(4): 868–872. DOI: 10.3321/j.issn:0372-2112.2009.04.036
    [78] Wang Y L, Duan K Q, and Xie W C. Cross beam STAP for nonstationary clutter suppression in airborne radar[J]. International Journal of Antennas and Propagation, 2013, 2013: 276310. DOI: 10.1155/2013/276310
    [79] 段克清, 谢文冲, 王永良. 共形阵机载雷达杂波非平稳特性及抑制方法研究[J]. 中国科学: 信息科学, 2011, 54(10): 2170–2177

    Duan K Q, Xie W C, and Wang Y L. Nonstationary clutter suppression for airborne conformal array radar[J]. Science China Information Sciences, 2011, 54(10): 2170–2177
    [80] 谢文冲, 王永良. 基于CMT技术的非正侧面阵机载雷达杂波抑制方法研究[J]. 电子学报, 2007, 35(3): 441–444. DOI: 10.3321/j.issn:0372-2112.2007.03.011

    Xie W C and Wang Y L. Study on clutter suppression approach to airborne phased radar with non-sidelooking arrays based on CMT[J]. Acta Electronica Sinica, 2007, 35(3): 441–444. DOI: 10.3321/j.issn:0372-2112.2007.03.011
    [81] Kelly E J. An adaptive detection algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 1986, AES-22(2): 115–127. DOI: 10.1109/TAES.1986.310745
    [82] Robey F C, Fuhrmann D R, Kelly E J, et al. A CFAR adaptive matched filter detector[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(1): 208–216. DOI: 10.1109/7.135446
    [83] Chen W S and Reed I S. A new CFAR detection test for radar[J]. Digital Signal Processing, 1991, 1(4): 198–214. DOI: 10.1016/1051-2004(91)90113-Y
    [84] Maio A D. Rao test for adaptive detection in Gaussian interference with unknown covariance matrix[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3577–3584. DOI: 10.1109/TSP.2007.894238
    [85] Maio A D. A new derivation of the adaptive matched filter[J].IEEE Signal Processing Letters, 2004, 11(10): 792–793. DOI: 10.1109/LSP.2004.835464
    [86] Raghavan R S, Qiu H F, and Mclaughlin D J. CFAR detection in clutter with unknown correlation properties[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(2): 647–657. DOI: 10.1109/7.381913
    [87] Kraut S and Scharf L L. The CFAR adaptive subspace detector is a scale-invariant GLRT[J]. IEEE Transactions on Signal Processing, 1999, 47(9): 2538–2541. DOI: 10.1109/78.782198
    [88] Kraut S, Scharf L L, and McWhorter L T. Adaptive subspace detectors[J]. IEEE Transactions on Signal Processing, 2001, 49(1): 1–16. DOI: 10.1109/78.890324
    [89] 王永良, 刘维建, 谢文冲, 等. 机载雷达空时自适应检测方法研究进展[J]. 雷达学报, 2014, 3(2): 201–207. DOI: 10.3724/SP.J.1300.2014.13081

    Wang Y L, Liu W J, Xie W C, et al. Research progress of space-time adaptive detection for airborne radar[J]. Journal of Radars, 2014, 3(2): 201–207. DOI: 10.3724/SP.J.1300.2014.13081
    [90] Liu W J, Xie W C, and Wang Y L. Parametric detector in the situation of mismatched signals[J]. IET Radar,Sonar&Navigation, 2014, 8(1): 48–53.
    [91] 刘维建, 常晋聃, 李鸿, 等. 干扰背景下机载雷达广义似然比检测方法[J]. 雷达科学与技术, 2014, 12(3): 267–272. DOI: 10.3969/j.issn.1672-2337.2014.03.008

    Liu W J, Chang J D, Li H, et al. Generalized likelihood ratio test for airborne radar in the presence of jamming[J]. Radar Science and Technology, 2014, 12(3): 267–272. DOI: 10.3969/j.issn.1672-2337.2014.03.008
    [92] 刘维建, 谢文冲, 王永良. 部分均匀环境中存在干扰时机载雷达广义似然比检测[J]. 电子与信息学报, 2013, 35(8): 1820–1826. DOI: 10.3724/SP.J.1146.2012.01492

    Liu W J, Xie W C, and Wang Y L. Generalized likelihood ratio test for airborne radar with jamming in partially homogeneous environment[J]. Journal of Electronics&Information Technology, 2013, 35(8): 1820–1826. DOI: 10.3724/SP.J.1146.2012.01492
    [93] Liu W J, Xie W C, Liu J, et al. Adaptive double subspace signal detection in Gaussian background-part I: Homogeneous environments[J]. IEEE Transactions on Signal Processing, 2014, 62(9): 2345–2357. DOI: 10.1109/TSP.2014.2309556
    [94] Liu W J, Xie W C, Liu J, et al. Adaptive double subspace signal detection in Gaussian background-part II: Partially homogeneous environments[J]. IEEE Transactions on Signal Processing, 2014, 62(9): 2358–2369. DOI: 10.1109/TSP.2014.2309553
    [95] Liu W J, Xie W C, Liu J, et al. Detection of a distributed target with direction uncertainty[J]. IET Radar,Sonar&Navigation, 2014, 8(9): 1177–1183.
    [96] Liu W J, Xie W C, and Wang Y L. Rao and Wald tests for distributed targets detection with unknown signal steering[J]. IEEE Signal Processing Letters, 2013, 20(11): 1086–1089. DOI: 10.1109/LSP.2013.2277371
    [97] Liu W J, Xie W C, Li R F, et al. Adaptive detectors in the Krylov subspace[J]. Science China Information Sciences, 2014, 57(10): 102310–102311.
    [98] Wang Y L, Liu W J, Xie W C, et al. Reduced-rank space-time adaptive detection for airborne radar[J]. Science China Information Sciences, 2014, 57(8): 82310–82311.
    [99] Jao J K, Yegulalp A F, and Ayasli S. Unified synthetic aperture space time adaptive radar (USASTAR) concept[R]. No. NTI-4, Lexington, MA: MIT Lincoln Laboratory, 2004.
    [100] 常玉林. 多通道低频超宽带SAR/GMTI系统长相干积累STAP技术研究[D]. [博士论文], 国防科学技术大学, 2009.

    Chang Y L. Coherent-processing-interval STAP techniques for low frequency multi-channel ultra-wide band SAR/GMTI system[D]. [Ph.D. dissertation], National University of Defense Technology, 2009.
    [101] 刘春静. 空时自适应处理进展概述[J]. 雷达与探测技术动态, 2012, (129): 1–6

    Liu C J. Progress in space time adaptive processing[J]. Journal of Radar&Detection Technology, 2012, (129): 1–6
  • 加载中
表(2)
计量
  • 文章访问数:  6498
  • HTML全文浏览量:  1326
  • PDF下载量:  1450
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-04
  • 修回日期:  2017-12-12
  • 网络出版日期:  2017-12-28

目录

    /

    返回文章
    返回
      翻译: