Several complementary inequalities to inequalities of Hermite-Hadamard type for s-convex functions
-
1737
Downloads
-
3240
Views
Authors
Feixiang Chen
- Key Laboratory for Nonlinear Science and System Structure, Chongqing Three Georges University, Wanzhou, 404100, P. R. China.
Shanhe Wu
- Department of Mathematics and Computer Science, Longyan University, Longyan, Fujian, 364012, P. R. China.
Abstract
In this paper, we establish some new Hermite-Hadamard inequalities for s-convex functions via fractional
integrals. Some Hermite-Hadamard type inequalities for products of two convex and s-convex functions via
Riemann-Liouville integrals are also established.
Share and Cite
ISRP Style
Feixiang Chen, Shanhe Wu, Several complementary inequalities to inequalities of Hermite-Hadamard type for s-convex functions, Journal of Nonlinear Sciences and Applications, 9 (2016), no. 2, 705--716
AMA Style
Chen Feixiang, Wu Shanhe, Several complementary inequalities to inequalities of Hermite-Hadamard type for s-convex functions. J. Nonlinear Sci. Appl. (2016); 9(2):705--716
Chicago/Turabian Style
Chen, Feixiang, Wu, Shanhe. "Several complementary inequalities to inequalities of Hermite-Hadamard type for s-convex functions." Journal of Nonlinear Sciences and Applications, 9, no. 2 (2016): 705--716
Keywords
- Hermite-Hadamard inequality
- s-convex function
- Riemann-Liouville fractional integrals
MSC
References
-
[1]
S. Abramovich, G. Farid, J. Pečarić, More about Hermite-Hadamard inequalities, Cauchy's means, and superquadracity, J. Inequal. Appl., 2010 (2010), 14 pages.
-
[2]
M. Bessenyei, Z. Páles , Hadamard-type inequalities for generalized convex functions, Math. Inequal. Appl., 6 (2003), 379-392.
-
[3]
F. Chen, S. Wu , Integral inequalities of Hermite-Hadamard type for products of two h-convex functions, Abstr. Appl. Anal., 2014 (2014), 6 pages.
-
[4]
F. Chen, S.Wu , Fejér and Hermite-Hadamard type inequalities for harmonically convex functions, J. Appl. Math., 2014 (2014), 6 pages.
-
[5]
F. Chen, S. Wu, Some Hermite-Hadamard type inequalities for Harmonically s-convex functions, Sci. World J., 2014 (2014), 7 pages.
-
[6]
S. S. Dragomir, S. Fitzpatrick, The Hadamard inequalities for s-convex functions in the second sense, Demonstratio Math., 32 (1999), 687-696.
-
[7]
H. Hudzik, L. Maligranda, Some remarks on s-convex functions, Aequationes Math., 48 (1994), 100-111.
-
[8]
I. Iscan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacet. J. Math. Stat., 43 (2014), 935-942.
-
[9]
I. Iscan, Ostrowski type inequalities for harmonically s-convex functions , Konuralp J. Math., 3 (2015), 63-74.
-
[10]
U. S. Kirmaci, M. K. Bakula, M. E. Özdemir, J. Pečarić, Hadamard-type inequalities for s-convex functions , Appl. Math. Comput., 193 (2007), 26-35.
-
[11]
B. G. Pachpatte, On some inequalities for convex functions , RGMIA Res. Rep. Coll., 6 (2003), 1-9.
-
[12]
M. Z. Sarikaya, E. Set, H. Yaldiz, N. Basak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403-2407.
-
[13]
E. Set, M. Z. Sarikaya, M. E. Özdemir, H. Yildirim, Hermite-Hadamard's inequality for some convex functions via fractional integrals and related results, J. Appl. Math. Stat. Inform., 10 (2014), 69-83.
-
[14]
J. R. Wang, X. Z. Li, M.Fečkan, Y. Zhou, Hermite-Hadamard-type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity, Appl. Anal., 92 (2013), 2241-2253.