[1]
|
Donatti, A.F. and Leite-Panissi, C.R.A. (2011) Activation of corticotropin-releasing factor receptors from the basolateral or central amygdala increases the tonic immobility response in guinea pigs: An innate fear behavior. Behavioural Brain Research, 225, 23-30.
doi:10.1016/j.bbr.2011.06.027
|
[2]
|
Bittencourt, J.C. and Sawchenko, P.E. (2000) Do centrally administered neuropeptides access cognate recaptors? An analysis in the central corticotrophin-releasing factor system. Journal Neuroscience, 20, 1142-1156.
|
[3]
|
Owens, M.J. and Nemeroff, C.B. (1991) Physiology and pharmacology of corticotropin-releasing factor. Pharmacology Review, 43, 425-73.
|
[4]
|
Butler R.K. and Finn D.P. (2009) Stress-induced analgesia. Progress in Neurobiology, 88, 184-202.
doi:10.1016/j.pneurobio.2009.04.003
|
[5]
|
Vit, J.P., Clauw, D.J., Moallem, T., Boudah, A., Ohara, P.T. and Jasmin, L. (2006) Analgesia and hyperalgesia from CRF receptor modulation in the central nervous system of Fischer and Lewis rats. Pain, 121, 241-260.
doi:10.1016/j.pain.2005.12.024
|
[6]
|
Ji, G. and Neugebauer, V. (2008) Pro-and anti-nociceptive effects of corticotropin-releasing factor (CRF) in central amygdala neurons are mediated through different receptors. Journal of Neurophysiology, 99, 1201-1212.
doi:10.1152/jn.01148.2007
|
[7]
|
Miguel, T.T., Gomes, K.S. and Nunes-De-Souza, R.L. (2012) Contrasting effects of nitric oxide and corticotropin-releasing factor within the dorsal periaqueductal gray on defensive behavior and nociception in mice. Brazilian Journal of Medical and Biological Research, 45, 299-307.
doi:10.1590/S0100-879X2012007500043
|
[8]
|
Miguel, T.T. and Nunes-De-Souza, R. L. (2011) Anxiogenic and antinociceptive effects induced by corticotropin-releasing factor (CRF) injections into the periaqueductal gray are modulated by CRF1 receptor in mice. Hormone Behavioral, 60, 262-300.
doi:10.1016/j.yhbeh.2011.06.004
|
[9]
|
Skorzewska, A., Bidzinski, A., Hamed, A., Lehner, M. and Turzynska, D., Sobolewska, A., et al. (2009) The effect of CRF and alpha-helical CRF9-41 on rat fear responses and amino acids release in the central nucleus of the amygdala. Neuropharmacology, 57, 148-156.
doi:10.1016/j.neuropharm.2009.04.016
|
[10]
|
Cummings, S., Elde, R., Ells, J. and Lindall A. (1983) Corticotropin releasing factor immunoreactivity is widely distributed within the central nervous system of the rat: An immunohistochemical study. Journal Neuroscience, 3, 1355-1368.
|
[11]
|
Palkovits, M., Brownstein, M. J. and Vale, W. (1985) Distribution of corticotropin releasing factor in the rat brain. FASEB Journal, 44, 215-219.
|
[12]
|
Swanson, L.W., Sawchenko, P.E., Rivier, J. and Vale, W.W. (1983) Organization of ovine corticotropin-releasing factor immunoreactive cells and fibers in the rat brain: An immunohistochemical study. Neuroendocrinology, 36,165-186.
doi:10.1159/000123454
|
[13]
|
De Souza, E.B., Insel, T.R., Perrin, M.H., Rivier, J., Vale, W. and Kuhar, M.J. (1985) Corticotropin releasing factor receptors are widely distributed within the rat central nervous system: An autoradiographic study. Journal Neuroscience, 5, 3189-3203.
|
[14]
|
Ji, G. and Neugebauer, V. (2007) Differential effects of CRF1 and CRF2 receptor antagonists on pain-related sensitization of neurons in the central nucleus of the amygdala. Journal Neurophysiology, 97, 3893-3904.
doi:10.1152/jn.00135.2007
|
[15]
|
Leite-Panissi, C.R.A., Rodrigues, C.L., Brentegani, M.R. and Menescal-De-Oliveira, L. (2001) Endogenous opiate analgesia induced by tonic immobility in guinea pigs. Brazilian Journal Medical and Biological Research, 34, 245 250. doi:10.1590/S0100-879X2001000200013
|
[16]
|
Rössner, W. (1965) Steretaktischer hirnatlas von meerchwlinchen. Palla Velag, Munich.
|
[17]
|
Cui, X.Y., Lundeberg, T. and Yu, L.C. (2004) Role of corticotrophin-release factor and its receptor in nociceptive modulation in the central nucleus of amygdale in rats. Brain Research, 995, 23-28.
doi:10.1016/j.brainres.2003.09.050
|
[18]
|
Lariviere, W. R. and Melzack, R. (2000) The role of corticotropin-releasing factor in pain and analgesia. Pain, 84, 1-12. doi:10.1016/S0304-3959(99)00193-1
|
[19]
|
Hargreaves K.M., Flores, C.M., Dionne, R.A., Mueller, G.P. (1990) The role of pituitary beta-endorphin in mediating corticotropin-releasing factor-induced antinociception. American Journal Physiology, 258, E235-242.
|
[20]
|
Song, Z. H. and Takemori, A. (1990) E. Involvement of spinal kappa opioid receptors in the antinociception produced by intrathecally administered corticotropin-releasing factor in mice. Journal of Pharmacology and Experimental Therapy, 254, 363-368.
|
[21]
|
Bianchi, M. and Panerai, A.E. (1995) CRH and the noradrenergic system mediate the antinociceptive effect of central interleukin-1α in the rat. Brain Research Bulletin, 36, 113-117. doi:10.1016/0361-9230(94)00174-Y
|
[22]
|
Lautenbacher, S., Roscher, S., Kohl, G., Vedder, H. and Krieg, J. (1999) Corticotropin-releasing-hormone lacks analgesic properties: An experimental study in humans, using non-inflammatory pain. Pain, 83, 1-7.
doi:10.1016/S0304-3959(99)00072-X
|
[23]
|
Sawamura, S., Obara, M., Taked, A.K., Maze, M. and Hanaoka, K. (2003) Corticotropin-releasing factor mediates the antinociceptive action of nitrous oxide in rats. Anesthesiology, 99,708-715.
doi:10.1097/00000542-200309000-00028
|
[24]
|
Yarushkina, N.I. (2008) The role of hypothalamo-hypophyseal-adrenocortical system hormones in controlling pain sensitivity. Neuroscience Behavioral and Physiology, 38,759-766. doi:10.1007/s11055-008-9044-z
|
[25]
|
Yarushkina, N.I., Bagaeva, T.R. and Filaretova, L.P. (2011) Central corticotropin-releasing factor (CRF) may attenuate somatic pain sensitivity through involvement of glucocorticoids. Journal of Physiology and Pharmacology, 62,541-548.
|
[26]
|
Yarushkina, N.I. and Bagaeva, T.R. (2011) Mechanism of the analgesic effect of corticotropin-releasing factor in conscious rats. Neuroscience Behavioral Physiology, 41, 500-505. doi:10.1007/s11055-011-9444-3
|
[27]
|
McNally, G.P. and Akil, H. (2002) Role of corticotropin-releasing hormone in the amygdala and bed nucleus of the stria terminalis in the behavior, pain modulatory, and endocrine consequences of opiate withdrawal. Neuroscience, 112, 605-617.
doi:10.1016/S0306-4522(02)00105-7
|
[28]
|
Steckler, T. (2001) The molecular neurobiology of stress —Evidence from genetic and epigenetic models. Behavioural Pharmacology, 12,381-427.
doi:10.1097/00008877-200111000-00002
|
[29]
|
Rouwette, T., Klemann, K., Gaszner, B., Scheffer, G.J., Roubos, E.W., Scheenen, W.J., Vissers, K. and Kozicz, T. (2011) Differential responses of corticotropin-releasing factor and urocortin 1 to acute pain stress in the rat brain. Neuroscience, 183, 15-24.
doi:10.1016/j.neuroscience.2011.03.054
|
[30]
|
Deyama, S., Nakagawa, T., Kaneko, S., Uehara, T. and Minami, M. (2007) Involvement of the bed nucleus of the stria terminalis in the negative affective component of visceral and somatic pain in rats. Behavioural Brain Research, 176, 367-371. doi:10.1016/j.bbr.2006.10.021
|
[31]
|
Valentino, R.J. and Foote, S.L. (1987) Corticotropinreleasing factor disrupts sensory responses of brain noradrenergic neurons. Neuroendocrinology, 45, 28-36.
doi:10.1159/000124700
|
[32]
|
Aldenhoff, J.B., Gruol, D.L., Rivier, J., Vale, W. and Siggins, G.R. (1983) Corticotropin releasing factor decreases postburst hyperpolarizations and excites hippocampal neurons. Science, 221, 875-877.
doi:10.1126/science.6603658
|
[33]
|
Bardin, L., Malfetes, N., Newman-Tancredi, A. and Depoortere, R. (2009) Chronic restraint stress induces mechanical and cold allodynia, and enhances inflammatory pain in rat: Relevance to human stress-associated painful pathologies. Behavioural Brain Research, 205, 360-366.
doi:10.1016/j.bbr.2009.07.005
|
[34]
|
Gamaro, G.D., Xavier, M.H., Pilger, J.A., Ely, D.R. and Dalmaz, C. (1998) The effect acute and repeated restraint stress on the nociceptive response in rats. Physiology and Behavior, 63, 693-697.
doi:10.1016/S0031-9384(97)00520-9
|
[35]
|
Caceres, C. and Burns, J.W. (1997) Cardiovascular reactivity to psychological stress may enhance subsequent pain sensitivity. Pain, 69, 237-244.
doi:10.1016/S0304-3959(96)03289-7
|
[36]
|
Amit, Z. and Galina, Z.H. (1986) Stress-induced analgesia: Adaptative pain suppression. Physiological Review, 66, 1091-120.
|
[37]
|
Myers, B., Dittmeyer, K. and Greenwood-Van Meerveld, B. (2007) Involvement of amygdaloid corticosterone in altered visceral and somatic sensation. Behavioural Brain Research, 181, 163-167. doi:10.1016/j.bbr.2007.03.031
|
[38]
|
Myers, B. and Greenwood-Van Meerveld B. (2007) Corticosteroid receptor-mediated mechanisms in the amygdala regulate anxiety and colonic sensitivity. American Journal Physiology Gastrointestinal and Liver Physiology, 292, 1622-1629. doi:10.1152/ajpgi.00080.2007
|
[39]
|
Shekhar, A., Truit, W., Rainnie, D. and Sajdyk, T. (2005) Role of stress, corticotrophin releasing factor (CRF) and amygdale plasticity in chronic anxiety. Stress, 8, 209-219.
doi:10.1080/10253890500504557
|
[40]
|
Phelps, E.A. and LeDoux, J.E. (2005) Contributions of the amygdala to emotion processing: from animal models to human behaviour. Neuron, 48, 175-187.
doi:10.1016/j.neuron.2005.09.025
|
[41]
|
Xu, W., Lundeberg, T., Wang, Y.T., Li, Y. and Yu, L.C. (2003) Antinociceptive effect of calcitonin gene-related peptide in the central nucleus of amygdala: Activating opioid receptors through amygdala-periaqueductal gray pathway. Neuroscience, 118, 1015-1022.
doi:10.1016/S0306-4522(03)00069-1
|
[42]
|
Leite-Panissi, C.R.A., Brentegani, M.R. and Menescalde-Oliveira, L. (2004) Cholinergic-opioidergic interaction in the central amygdala induces antinociception in the guinea pig. Brazilian Journal and Medical Biology Research, 37, 1571-1579.
doi:10.1590/S0100-879X2004001000018
|
[43]
|
Greenwood-Van Meerveld, B., Johnson, A. C., Schulkin, J. and Myers, D. A. (2006) Long-term expression of corticotropin-releasing factor (CRF) in the paraventricular nucleus of the hypothalamus in response to an acute colonic inflammation. Brain Research, 1071, 91-96.
doi:10.1016/j.brainres.2005.11.071
|
[44]
|
Sinniger, V., Porcher, C., Mouchet, P., Juhem, A. and Bonaz, B. (2004) C-fos and CRF receptor gene transcription in the brain of acetic acid-induced somatovisceral pain in rats. Pain, 110, 738-750.
doi:10.1016/j.pain.2004.05.014
|
[45]
|
Ulrich-Lai, Y.M., Xie, W., Meij, J.T.A., Dolgas, C.M., Yu, L. and Herman, J. P. (2006) Limbic and HPA axis function in the animal model of chronic neuropathic pain. Physiology and Behavior, 88, 67-76.
doi:10.1016/j.physbeh.2006.03.012
|
[46]
|
Martinez, V., Wang, L., Million, M., Rivier, J. and Tache, Y. (2004) Urocortins and the regulation of gastrointestinal motor function and visceral pain. Peptides, 25, 17331744. doi:10.1016/j.peptides.2004.05.025
|
[47]
|
Million, M., Grigoriadis, D. E., Sullivan, S., Crowe, P. D., Mcroberts, J. A., Zhou, H., Saunders, P. R., Maillot, C., Myer, E. A. and Tache, Y. A. (2003) Novel water-soluble selective CRF1 receptor antagonist, NBI 35965, blunts stress induced visceral hyperalgesia and colonic motor function in rats. Brain Research, 985, 32-42.
doi:10.1016/S0006-8993(03)03027-0
|
[48]
|
Million, M., Wang, L., Adelson, D.W., Yuan, P-Q., Maillot, C., Coutinho, S.V., Mcroberts, J.A., Bayati, A., Mattsson, H., Wu, V., Wei, J-Y, Rivier, J., Vale, W., Mayer, E.A. and Taché, Y. (2006) CRF2 receptor activation prevents colorectal distension induced visceral pain and spinal ERK1/2 phosphorylation in rats. Neurogastroenterology, 55, 172-181.
|
[49]
|
Nijsen, M., Ongenae, N., Meulemans, A. and Coulie, B. (2005) Divergent role for CRF1 and CRF2 receptors in the modulation of visceral pain. Neurogastroenterology and Motilin, 17, 423-432.
doi:10.1111/j.1365-2982.2005.00644.x
|
[50]
|
Taché, Y. and Bonaz, B. (2007) Corticotropin-releasing factor receptors and stress-related alterations of gut motor function. Journal of Clinical Investigation, 117, 33-40.
doi:10.1172/JCI30085
|
[51]
|
Taché, Y., Martinez, V., Wang, L. and Million, M. (2004) CRF1 receptor signaling pathways are involved in stressrelated alterations of colonic function and viscerosensitivity: Implications for irritable bowel syndrome. British Journal Pharmacology, 141, 1321-1330.
doi:10.1038/sj.bjp.0705760
|