img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation代码理解

      

import argparse
import os
import sys
import time

import numpy as np
from PIL import Image, ImageOps
from torchvision import transforms
from tqdm import tqdm
import cv2

sys.path.append("./")
from img2pose import img2poseModel
from model_loader import load_model


def init_model(pretrained_path, threed_68_points, pose_stddev, pose_mean, depth):
    img2pose_model = img2poseModel(
            depth,
            200,
            1400,
            pose_mean=np.load(pose_mean),
            pose_stddev=np.load(pose_stddev),
            threed_68_points=np.load(threed_68_points),
        )
    load_model(
            img2pose_model.fpn_model,
            pretrained_path,
            cpu_mode=str(img2pose_model.device) == "cpu",
            model_only=True,
        )
    img2pose_model.evaluate()

    return img2pose_model


def bbox_voting(bboxes, iou_thresh=0.6):
    # bboxes: a numpy array of N*5 size representing N boxes;
    #         for each box, it is represented as [x1, y1, x2, y2, s]
    # iou_thresh: group bounding boxes if their overlap is > threshold.
    bboxes = np.asarray(bboxes)
    order = bboxes[:, 4].ravel().argsort()[::-1]
    bboxes = bboxes[order, :]
    areas = (bboxes[:, 2] - bboxes[:, 0] + 1) * (bboxes[:, 3] - bboxes[:, 1] + 1)
    voted_bboxes = np.zeros([0, 5])
    while bboxes.shape[0] > 0:
        xx1 = np.maximum(bboxes[0, 0], bboxes[:, 0])
        yy1 = np.maximum(bboxes[0, 1], bboxes[:, 1])
        xx2 = np.minimum(bboxes[0, 2], bboxes[:, 2])
        yy2 = np.minimum(bboxes[0, 3], b
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
  翻译: