default search action
Martin Renqiang Min
Person information
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j12]Tianci Song, Eric Cosatto, Gaoyuan Wang, Rui Kuang, Mark Gerstein, Martin Renqiang Min, Jonathan Warrell:
Predicting spatially resolved gene expression via tissue morphology using adaptive spatial GNNs. Bioinform. 40(Supplement_2): ii111-ii119 (2024) - [c46]Xin Hu, Kai Li, Deep Patel, Erik Kruus, Martin Renqiang Min, Zhengming Ding:
Weakly-Supervised Temporal Action Localization with Multi-Modal Plateau Transformers. CVPR Workshops 2024: 2704-2713 - [c45]Kumaranage Ravindu Yasas Nagasinghe, Honglu Zhou, Malitha Gunawardhana, Martin Renqiang Min, Daniel Harari, Muhammad Haris Khan:
Why Not Use Your Textbook? Knowledge-Enhanced Procedure Planning of Instructional Videos. CVPR 2024: 18816-18826 - [c44]Yuxiao Chen, Kai Li, Wentao Bao, Deep Patel, Yu Kong, Martin Renqiang Min, Dimitris N. Metaxas:
Learning to Localize Actions in Instructional Videos with LLM-Based Multi-pathway Text-Video Alignment. ECCV (82) 2024: 193-210 - [c43]Zi'ou Zheng, Christopher Malon, Martin Renqiang Min, Xiaodan Zhu:
Exploring the Role of Reasoning Structures for Constructing Proofs in Multi-Step Natural Language Reasoning with Large Language Models. EMNLP 2024: 15299-15312 - [i40]Kumaranage Ravindu Yasas Nagasinghe, Honglu Zhou, Malitha Gunawardhana, Martin Renqiang Min, Daniel Harari, Muhammad Haris Khan:
Why Not Use Your Textbook? Knowledge-Enhanced Procedure Planning of Instructional Videos. CoRR abs/2403.02782 (2024) - [i39]Yao Wei, Martin Renqiang Min, George Vosselman, Li Erran Li, Michael Ying Yang:
Compositional 3D Scene Synthesis with Scene Graph Guided Layout-Shape Generation. CoRR abs/2403.12848 (2024) - [i38]Yuxiao Chen, Kai Li, Wentao Bao, Deep Patel, Yu Kong, Martin Renqiang Min, Dimitris N. Metaxas:
Learning to Localize Actions in Instructional Videos with LLM-Based Multi-Pathway Text-Video Alignment. CoRR abs/2409.16145 (2024) - [i37]Xiaoxiao He, Ligong Han, Quan Dao, Song Wen, Minhao Bai, Di Liu, Han Zhang, Martin Renqiang Min, Felix Juefei-Xu, Chaowei Tan, Bo Liu, Kang Li, Hongdong Li, Junzhou Huang, Faez Ahmed, Akash Srivastava, Dimitris N. Metaxas:
DICE: Discrete Inversion Enabling Controllable Editing for Multinomial Diffusion and Masked Generative Models. CoRR abs/2410.08207 (2024) - [i36]Zi'ou Zheng, Christopher Malon, Martin Renqiang Min, Xiaodan Zhu:
Exploring the Role of Reasoning Structures for Constructing Proofs in Multi-Step Natural Language Reasoning with Large Language Models. CoRR abs/2410.08436 (2024) - [i35]Jonathan Warrell, Francesco Alesiani, Cameron Smith, Anja Mösch, Martin Renqiang Min:
Variational methods for Learning Multilevel Genetic Algorithms using the Kantorovich Monad. CoRR abs/2411.09779 (2024) - [i34]Wentao Bao, Kai Li, Yuxiao Chen, Deep Patel, Martin Renqiang Min, Yu Kong:
Exploiting VLM Localizability and Semantics for Open Vocabulary Action Detection. CoRR abs/2411.10922 (2024) - [i33]Haoran Liu, Youzhi Luo, Tianxiao Li, James Caverlee, Martin Renqiang Min:
Learning Disentangled Equivariant Representation for Explicitly Controllable 3D Molecule Generation. CoRR abs/2412.15086 (2024) - 2023
- [j11]Filippo Grazioli, Pierre Machart, Anja Mösch, Kai Li, Leonardo V. Castorina, Nico Pfeifer, Martin Renqiang Min:
Attentive Variational Information Bottleneck for TCR-peptide interaction prediction. Bioinform. 39(1) (2023) - [j10]Ziqi Chen, Baoyi Zhang, Hongyu Guo, Prashant S. Emani, Trevor Clancy, Chongming Jiang, Mark Gerstein, Xia Ning, Chao Cheng, Martin Renqiang Min:
Binding peptide generation for MHC Class I proteins with deep reinforcement learning. Bioinform. 39(2) (2023) - [c42]Changhao Shi, Haomiao Ni, Kai Li, Shaobo Han, Mingfu Liang, Martin Renqiang Min:
Exploring Compositional Visual Generation with Latent Classifier Guidance. CVPR Workshops 2023: 853-862 - [c41]Kai Li, Deep Patel, Erik Kruus, Martin Renqiang Min:
Source-Free Video Domain Adaptation with Spatial-Temporal-Historical Consistency Learning. CVPR 2023: 14643-14652 - [c40]Haomiao Ni, Changhao Shi, Kai Li, Sharon X. Huang, Martin Renqiang Min:
Conditional Image-to-Video Generation with Latent Flow Diffusion Models. CVPR 2023: 18444-18455 - [c39]Haifeng Xia, Kai Li, Martin Renqiang Min, Zhengming Ding:
Few-Shot Video Classification via Representation Fusion and Promotion Learning. ICCV 2023: 19254-19263 - [c38]Tianxiao Li, Hongyu Guo, Filippo Grazioli, Mark Gerstein, Martin Renqiang Min:
Disentangled Wasserstein Autoencoder for T-Cell Receptor Engineering. NeurIPS 2023 - [c37]Ziqi Chen, Martin Renqiang Min, Hongyu Guo, Chao Cheng, Trevor Clancy, Xia Ning:
T-Cell Receptor Optimization with Reinforcement Learning and Mutation Polices for Precision Immunotherapy. RECOMB 2023: 174-191 - [i32]Yuren Cong, Martin Renqiang Min, Li Erran Li, Bodo Rosenhahn, Michael Ying Yang:
Attribute-Centric Compositional Text-to-Image Generation. CoRR abs/2301.01413 (2023) - [i31]Ziqi Chen, Martin Renqiang Min, Hongyu Guo, Chao Cheng, Trevor Clancy, Xia Ning:
T-Cell Receptor Optimization with Reinforcement Learning and Mutation Policies for Precesion Immunotherapy. CoRR abs/2303.02162 (2023) - [i30]Haomiao Ni, Changhao Shi, Kai Li, Sharon X. Huang, Martin Renqiang Min:
Conditional Image-to-Video Generation with Latent Flow Diffusion Models. CoRR abs/2303.13744 (2023) - [i29]Changhao Shi, Haomiao Ni, Kai Li, Shaobo Han, Mingfu Liang, Martin Renqiang Min:
Exploring Compositional Visual Generation with Latent Classifier Guidance. CoRR abs/2304.12536 (2023) - 2022
- [c36]Zhiheng Li, Martin Renqiang Min, Kai Li, Chenliang Xu:
StyleT2I: Toward Compositional and High-Fidelity Text-to-Image Synthesis. CVPR 2022: 18176-18186 - [c35]Tingfeng Li, Shaobo Han, Martin Renqiang Min, Dimitris N. Metaxas:
Learning Transferable Reward for Query Object Localization with Policy Adaptation. ICLR 2022 - [c34]Yiren Jian, Erik Kruus, Martin Renqiang Min:
T-Cell Receptor-Peptide Interaction Prediction with Physical Model Augmented Pseudo-Labeling. KDD 2022: 3090-3097 - [c33]Ligong Han, Sri Harsha Musunuri, Martin Renqiang Min, Ruijiang Gao, Yu Tian, Dimitris N. Metaxas:
AE-StyleGAN: Improved Training of Style-Based Auto-Encoders. WACV 2022: 955-964 - [i28]Tingfeng Li, Shaobo Han, Martin Renqiang Min, Dimitris N. Metaxas:
Learning Transferable Reward for Query Object Localization with Policy Adaptation. CoRR abs/2202.12403 (2022) - [i27]Zhiheng Li, Martin Renqiang Min, Kai Li, Chenliang Xu:
StyleT2I: Toward Compositional and High-Fidelity Text-to-Image Synthesis. CoRR abs/2203.15799 (2022) - 2021
- [j9]Zhanlin Chen, Jing Zhang, Jason Liu, Yi Dai, Donghoon Lee, Martin Renqiang Min, Min Xu, Mark Gerstein:
DECODE: a Deep-learning framework for Condensing enhancers and refining boundaries with large-scale functional assays. Bioinform. 37(Supplement): 280-288 (2021) - [j8]Ziqi Chen, Martin Renqiang Min, Srinivasan Parthasarathy, Xia Ning:
A deep generative model for molecule optimization via one fragment modification. Nat. Mach. Intell. 3(12): 1040-1049 (2021) - [c32]Zhan Shi, Hui Liu, Martin Renqiang Min, Christopher Malon, Li Erran Li, Xiaodan Zhu:
Retrieval, Analogy, and Composition: A framework for Compositional Generalization in Image Captioning. EMNLP (Findings) 2021: 1990-2000 - [c31]Yao Li, Martin Renqiang Min, Thomas C. M. Lee, Wenchao Yu, Erik Kruus, Wei Wang, Cho-Jui Hsieh:
Towards Robustness of Deep Neural Networks via Regularization. ICCV 2021: 7476-7485 - [c30]Ligong Han, Martin Renqiang Min, Anastasis Stathopoulos, Yu Tian, Ruijiang Gao, Asim Kadav, Dimitris N. Metaxas:
Dual Projection Generative Adversarial Networks for Conditional Image Generation. ICCV 2021: 14418-14427 - [c29]Jun Han, Martin Renqiang Min, Ligong Han, Li Erran Li, Xuan Zhang:
Disentangled Recurrent Wasserstein Autoencoder. ICLR 2021 - [c28]Honglu Zhou, Asim Kadav, Farley Lai, Alexandru Niculescu-Mizil, Martin Renqiang Min, Mubbasir Kapadia, Hans Peter Graf:
Hopper: Multi-hop Transformer for Spatiotemporal Reasoning. ICLR 2021 - [i26]Jun Han, Martin Renqiang Min, Ligong Han, Li Erran Li, Xuan Zhang:
Disentangled Recurrent Wasserstein Autoencoder. CoRR abs/2101.07496 (2021) - [i25]Honglu Zhou, Asim Kadav, Farley Lai, Alexandru Niculescu-Mizil, Martin Renqiang Min, Mubbasir Kapadia, Hans Peter Graf:
Hopper: Multi-hop Transformer for Spatiotemporal Reasoning. CoRR abs/2103.10574 (2021) - [i24]Ligong Han, Martin Renqiang Min, Anastasis Stathopoulos, Yu Tian, Ruijiang Gao, Asim Kadav, Dimitris N. Metaxas:
Dual Projection Generative Adversarial Networks for Conditional Image Generation. CoRR abs/2108.09016 (2021) - [i23]Ligong Han, Sri Harsha Musunuri, Martin Renqiang Min, Ruijiang Gao, Yu Tian, Dimitris N. Metaxas:
AE-StyleGAN: Improved Training of Style-Based Auto-Encoders. CoRR abs/2110.08718 (2021) - 2020
- [c27]Pengyu Cheng, Martin Renqiang Min, Dinghan Shen, Christopher Malon, Yizhe Zhang, Yitong Li, Lawrence Carin:
Improving Disentangled Text Representation Learning with Information-Theoretic Guidance. ACL 2020: 7530-7541 - [c26]Yizhe Zhu, Martin Renqiang Min, Asim Kadav, Hans Peter Graf:
S3VAE: Self-Supervised Sequential VAE for Representation Disentanglement and Data Generation. CVPR 2020: 6537-6546 - [i22]Yizhe Zhu, Martin Renqiang Min, Asim Kadav, Hans Peter Graf:
S3VAE: Self-Supervised Sequential VAE for Representation Disentanglement and Data Generation. CoRR abs/2005.11437 (2020) - [i21]Pengyu Cheng, Martin Renqiang Min, Dinghan Shen, Christopher Malon, Yizhe Zhang, Yitong Li, Lawrence Carin:
Improving Disentangled Text Representation Learning with Information-Theoretic Guidance. CoRR abs/2006.00693 (2020) - [i20]Ziqi Chen, Martin Renqiang Min, Xia Ning:
Ranking-based Convolutional Neural Network Models for Peptide-MHC Binding Prediction. CoRR abs/2012.02840 (2020) - [i19]Ziqi Chen, Martin Renqiang Min, Srinivasan Parthasarathy, Xia Ning:
Molecule Optimization via Fragment-based Generative Models. CoRR abs/2012.04231 (2020)
2010 – 2019
- 2019
- [c25]Kai Li, Martin Renqiang Min, Bing Bai, Yun Fu, Hans Peter Graf:
On Novel Object Recognition: A Unified Framework for Discriminability and Adaptability. CIKM 2019: 2265-2268 - [c24]Kai Li, Martin Renqiang Min, Yun Fu:
Rethinking Zero-Shot Learning: A Conditional Visual Classification Perspective. ICCV 2019: 3582-3591 - [c23]Yogesh Balaji, Martin Renqiang Min, Bing Bai, Rama Chellappa, Hans Peter Graf:
Conditional GAN with Discriminative Filter Generation for Text-to-Video Synthesis. IJCAI 2019: 1995-2001 - [c22]Xiaoyuan Liang, Martin Renqiang Min, Hongyu Guo, Guiling Wang:
Learning K-way D-dimensional Discrete Embedding for Hierarchical Data Visualization and Retrieval. IJCAI 2019: 2966-2972 - [c21]Xiaoyuan Liang, Guiling Wang, Martin Renqiang Min, Yi Qi, Zhu Han:
A Deep Spatio-Temporal Fuzzy Neural Network for Passenger Demand Prediction. SDM 2019: 100-108 - [i18]Zhenyu Duan, Martin Renqiang Min, Li Erran Li, Mingbo Cai, Yi Xu, Bingbing Ni:
Disentangled Deep Autoencoding Regularization for Robust Image Classification. CoRR abs/1902.11134 (2019) - [i17]Xiaoyuan Liang, Guiling Wang, Martin Renqiang Min, Yi Qi, Zhu Han:
A Deep Spatio-Temporal Fuzzy Neural Network for Passenger Demand Prediction. CoRR abs/1905.05614 (2019) - [i16]Kai Li, Martin Renqiang Min, Yun Fu:
Rethinking Zero-Shot Learning: A Conditional Visual Classification Perspective. CoRR abs/1909.05995 (2019) - [i15]Bo Peng, Renqiang Min, Xia Ning:
CNN-based Dual-Chain Models for Knowledge Graph Learning. CoRR abs/1911.06910 (2019) - 2018
- [c20]Yitong Li, Martin Renqiang Min, Dinghan Shen, David E. Carlson, Lawrence Carin:
Video Generation From Text. AAAI 2018: 7065-7072 - [c19]Yunchen Pu, Martin Renqiang Min, Zhe Gan, Lawrence Carin:
Adaptive Feature Abstraction for Translating Video to Text. AAAI 2018: 7284-7291 - [c18]Dinghan Shen, Guoyin Wang, Wenlin Wang, Martin Renqiang Min, Qinliang Su, Yizhe Zhang, Chunyuan Li, Ricardo Henao, Lawrence Carin:
Baseline Needs More Love: On Simple Word-Embedding-Based Models and Associated Pooling Mechanisms. ACL (1) 2018: 440-450 - [c17]Dinghan Shen, Martin Renqiang Min, Yitong Li, Lawrence Carin:
Learning Context-Aware Convolutional Filters for Text Processing. EMNLP 2018: 1839-1848 - [c16]Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Dae-ki Cho, Haifeng Chen:
Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection. ICLR (Poster) 2018 - [c15]Ting Chen, Martin Renqiang Min, Yizhou Sun:
Learning K-way D-dimensional Discrete Codes for Compact Embedding Representations. ICML 2018: 853-862 - [c14]Yang Gao, Jeff M. Phillips, Yan Zheng, Renqiang Min, P. Thomas Fletcher, Guido Gerig:
Fully convolutional structured LSTM networks for joint 4D medical image segmentation. ISBI 2018: 1104-1108 - [c13]Martin Renqiang Min, Hongyu Guo, Dinghan Shen:
Parametric t-Distributed Stochastic Exemplar-Centered Embedding. ECML/PKDD (1) 2018: 477-493 - [i14]Dinghan Shen, Guoyin Wang, Wenlin Wang, Martin Renqiang Min, Qinliang Su, Yizhe Zhang, Chunyuan Li, Ricardo Henao, Lawrence Carin:
Baseline Needs More Love: On Simple Word-Embedding-Based Models and Associated Pooling Mechanisms. CoRR abs/1805.09843 (2018) - [i13]Ting Chen, Martin Renqiang Min, Yizhou Sun:
Learning K-way D-dimensional Discrete Codes for Compact Embedding Representations. CoRR abs/1806.09464 (2018) - [i12]Yao Li, Martin Renqiang Min, Wenchao Yu, Cho-Jui Hsieh, Thomas C. M. Lee, Erik Kruus:
Optimal Transport Classifier: Defending Against Adversarial Attacks by Regularized Deep Embedding. CoRR abs/1811.07950 (2018) - 2017
- [j7]Linnan Wang, Yi Yang, Renqiang Min, Srimat T. Chakradhar:
Accelerating deep neural network training with inconsistent stochastic gradient descent. Neural Networks 93: 219-229 (2017) - [c12]Yunchen Pu, Martin Renqiang Min, Zhe Gan, Lawrence Carin:
Adaptive Feature Abstraction for Translating Video to Language. ICLR (Workshop) 2017 - [c11]Martin Renqiang Min, Hongyu Guo, Dongjin Song:
Exemplar-centered Supervised Shallow Parametric Data Embedding. IJCAI 2017: 2479-2485 - [c10]Huayu Li, Martin Renqiang Min, Yong Ge, Asim Kadav:
A Context-aware Attention Network for Interactive Question Answering. KDD 2017: 927-935 - [i11]Martin Renqiang Min, Hongyu Guo, Dongjin Song:
Exemplar-Centered Supervised Shallow Parametric Data Embedding. CoRR abs/1702.06602 (2017) - [i10]Dinghan Shen, Martin Renqiang Min, Yitong Li, Lawrence Carin:
Adaptive Convolutional Filter Generation for Natural Language Understanding. CoRR abs/1709.08294 (2017) - [i9]Yitong Li, Martin Renqiang Min, Dinghan Shen, David E. Carlson, Lawrence Carin:
Video Generation From Text. CoRR abs/1710.00421 (2017) - [i8]Martin Renqiang Min, Hongyu Guo, Dinghan Shen:
Parametric t-Distributed Stochastic Exemplar-centered Embedding. CoRR abs/1710.05128 (2017) - [i7]Ting Chen, Martin Renqiang Min, Yizhou Sun:
Learning K-way D-dimensional Discrete Code For Compact Embedding Representations. CoRR abs/1711.03067 (2017) - 2016
- [c9]Ke Zhang, Jianwu Xu, Martin Renqiang Min, Guofei Jiang, Konstantinos Pelechrinis, Hui Zhang:
Automated IT system failure prediction: A deep learning approach. IEEE BigData 2016: 1291-1300 - [i6]Linnan Wang, Yi Yang, Martin Renqiang Min, Srimat T. Chakradhar:
Accelerating Deep Neural Network Training with Inconsistent Stochastic Gradient Descent. CoRR abs/1603.05544 (2016) - [i5]Martin Renqiang Min, Hongyu Guo, Dongjin Song:
A Shallow High-Order Parametric Approach to Data Visualization and Compression. CoRR abs/1608.04689 (2016) - [i4]Yunchen Pu, Martin Renqiang Min, Zhe Gan, Lawrence Carin:
Adaptive Feature Abstraction for Translating Video to Language. CoRR abs/1611.07837 (2016) - [i3]Huayu Li, Martin Renqiang Min, Yong Ge, Asim Kadav:
A Context-aware Attention Network for Interactive Question Answering. CoRR abs/1612.07411 (2016) - 2015
- [j6]Pavel P. Kuksa, Martin Renqiang Min, Rishabh Dugar, Mark Gerstein:
High-order neural networks and kernel methods for peptide-MHC binding prediction. Bioinform. 31(22): 3600-3607 (2015) - [i2]Hongyu Guo, Xiaodan Zhu, Martin Renqiang Min:
A Deep Learning Model for Structured Outputs with High-order Interaction. CoRR abs/1504.08022 (2015) - 2014
- [c8]Martin Renqiang Min, Xia Ning, Chao Cheng, Mark Gerstein:
Interpretable Sparse High-Order Boltzmann Machines. AISTATS 2014: 614-622 - [c7]Sanjay Purushotham, Martin Renqiang Min, C.-C. Jay Kuo, Rachel Ostroff:
Factorized sparse learning models with interpretable high order feature interactions. KDD 2014: 552-561 - [c6]Martin Renqiang Min, Salim A. Chowdhury, Yanjun Qi, Alex Stewart, Rachel Ostroff:
An Integrated Approach To Blood-Based Cancer Diagnosis And Biomarker Discovery. Pacific Symposium on Biocomputing 2014: 87-98 - [c5]Hao Wu, Martin Renqiang Min, Bing Bai:
Deep Semantic Embedding. SMIR@SIGIR 2014: 46-52 - 2012
- [j5]Ke Jin, Jingjing Li, Frederick S. Vizeacoumar, Zhijian Li, Renqiang Min, Lee Zamparo, Franco J. Vizeacoumar, Alessandro Datti, Brenda J. Andrews, Charles Boone, Zhaolei Zhang:
PhenoM: a database of morphological phenotypes caused by mutation of essential genes in Saccharomyces cerevisiae. Nucleic Acids Res. 40(Database-Issue): 687-694 (2012) - 2011
- [b1]Renqiang Min:
Machine Learning Approaches to Biological Sequence and Phenotype Data Analysis. University of Toronto, Canada, 2011 - [j4]Chao Cheng, Renqiang Min, Mark Gerstein:
TIP: A probabilistic method for identifying transcription factor target genes from ChIP-seq binding profiles. Bioinform. 27(23): 3221-3227 (2011) - 2010
- [j3]Jingjing Li, Yu Liu, TaeHyung Kim, Renqiang Min, Zhaolei Zhang:
Gene Expression Variability within and between Human Populations and Implications toward Disease Susceptibility. PLoS Comput. Biol. 6(8) (2010) - [c4]Martin Renqiang Min, Laurens van der Maaten, Zineng Yuan, Anthony J. Bonner, Zhaolei Zhang:
Deep Supervised t-Distributed Embedding. ICML 2010: 791-798
2000 – 2009
- 2009
- [j2]Jingjing Li, Martin Renqiang Min, Anthony J. Bonner, Zhaolei Zhang:
A Probabilistic Framework to Improve microRNA Target Prediction by Incorporating Proteomics Data. J. Bioinform. Comput. Biol. 7(6): 955-972 (2009) - [j1]Renqiang Min, Anthony J. Bonner, Jingjing Li, Zhaolei Zhang:
Learned Random-Walk Kernels and Empirical-Map Kernels for Protein Sequence Classification. J. Comput. Biol. 16(3): 457-474 (2009) - [c3]Martin Renqiang Min, David A. Stanley, Zineng Yuan, Anthony J. Bonner, Zhaolei Zhang:
A Deep Non-linear Feature Mapping for Large-Margin kNN Classification. ICDM 2009: 357-366 - [c2]Martin Renqiang Min, Rui Kuang, Anthony J. Bonner, Zhaolei Zhang:
Learning Random-Walk Kernels for Protein Remote Homology Identification and Motif Discovery. SDM 2009: 133-144 - [i1]Martin Renqiang Min, David A. Stanley, Zineng Yuan, Anthony J. Bonner, Zhaolei Zhang:
Large-Margin kNN Classification Using a Deep Encoder Network. CoRR abs/0906.1814 (2009) - 2007
- [c1]Martin Renqiang Min, Anthony J. Bonner, Zhaolei Zhang:
Modifying kernels using label information improves SVM classification performance. ICMLA 2007: 13-18
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-24 17:18 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint