default search action
Hiroshi Motoda
Person information
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2023
- [j58]Takayasu Fushimi, Kazumi Saito, Hiroshi Motoda:
Constructing outlier-free histograms with variable bin-width based on distance minimization. Intell. Data Anal. 27(1): 5-29 (2023) - 2022
- [j57]Takayasu Fushimi, Kazumi Saito, Hiroshi Motoda:
Efficient computation of expected motif frequency in uncertain graphs by exploiting possible world marginalization and motif transition. Soc. Netw. Anal. Min. 12(1): 126 (2022) - 2021
- [j56]Kazumi Saito, Takayasu Fushimi, Kouzou Ohara, Masahiro Kimura, Hiroshi Motoda:
Efficient computation of target-oriented link criticalness centrality in uncertain graphs. Intell. Data Anal. 25(5): 1323-1343 (2021) - [j55]Takayasu Fushimi, Kazumi Saito, Kouzou Ohara, Masahiro Kimura, Hiroshi Motoda:
General framework of opening and closing shops over a spatial network based on stochastic utility under competitive and time-bounded environment. Soc. Netw. Anal. Min. 11(1): 70 (2021) - [c137]Takayasu Fushimi, Kazumi Saito, Hiroshi Motoda:
Efficient analytical computation of expected frequency of motifs of small size by marginalization in uncertain network. ASONAM 2021: 1-8 - 2020
- [j54]Kouzou Ohara, Kazumi Saito, Masahiro Kimura, Hiroshi Motoda:
Resampling-based predictive simulation framework of stochastic diffusion model for identifying top-K influential nodes. Int. J. Data Sci. Anal. 9(2): 175-195 (2020) - [c136]Takayasu Fushimi, Kazumi Saito, Kouzou Ohara, Masahiro Kimura, Hiroshi Motoda:
Opening and Closing Dynamics of Competing Shop Groups over Spatial Networks. ASONAM 2020: 393-400 - [c135]Takayasu Fushimi, Kazumi Saito, Kouzou Ohara, Masahiro Kimura, Hiroshi Motoda:
Efficient Computing of PageRank Scores on Exact Expected Transition Matrix of Large Uncertain Graph. IEEE BigData 2020: 916-923 - [c134]Kouzou Ohara, Takayasu Fushimi, Kazumi Saito, Masahiro Kimura, Hiroshi Motoda:
Maximizing Network Coverage Under the Presence of Time Constraint by Injecting Most Effective k-Links. DS 2020: 421-436
2010 – 2019
- 2019
- [j53]Kouzou Ohara, Kazumi Saito, Masahiro Kimura, Hiroshi Motoda:
Critical Node Identification based on Articulation Point Detection for Uncertain Network. Int. J. Netw. Comput. 9(2): 201-216 (2019) - [c133]Kazumi Saito, Kouzou Ohara, Masahiro Kimura, Hiroshi Motoda:
Resampling-Based Framework for Unbiased Estimator of Node Centrality over Large Complex Network. DS 2019: 428-442 - [c132]Kazumi Saito, Kouzou Ohara, Masahiro Kimura, Hiroshi Motoda:
Efficient Identification of Critical Links Based on Reachability Under the Presence of Time Constraint. PRICAI (2) 2019: 404-418 - 2018
- [j52]Kazumi Saito, Kouzou Ohara, Masahiro Kimura, Hiroshi Motoda:
Which is more influential, "Who" or "When" for a user to rate in online review site? Intell. Data Anal. 22(3): 639-657 (2018) - [j51]Kazumi Saito, Kouzou Ohara, Masahiro Kimura, Hiroshi Motoda:
Accurate and efficient detection of critical links in network to minimize information loss. J. Intell. Inf. Syst. 51(2): 235-255 (2018) - [c131]Kouzou Ohara, Kazumi Saito, Masahiro Kimura, Hiroshi Motoda:
Critical Node Identification Based on Articulation Point Detection for Network with Uncertain Connectivity. CANDAR 2018: 146-152 - [c130]Kazumi Saito, Kouzou Ohara, Masahiro Kimura, Hiroshi Motoda:
Critical Link Identification Based on Bridge Detection for Network with Uncertain Connectivity. ISMIS 2018: 89-99 - [c129]Kazumi Saito, Kouzou Ohara, Masahiro Kimura, Hiroshi Motoda:
Efficient Detection of Critical Links to Maintain Performance of Network with Uncertain Connectivity. PRICAI (1) 2018: 282-295 - 2017
- [c128]Kouzou Ohara, Kazumi Saito, Masahiro Kimura, Hiroshi Motoda:
Maximizing Network Performance Based on Group Centrality by Creating Most Effective k-Links. DSAA 2017: 561-570 - [c127]Kanji Matsutani, Masahito Kumano, Masahiro Kimura, Kazumi Saito, Kouzou Ohara, Hiroshi Motoda:
Discovering Cooperative Structure Among Online Items for Attention Dynamics. ICDM Workshops 2017: 1033-1041 - [c126]Kazumi Saito, Kouzou Ohara, Masahiro Kimura, Hiroshi Motoda:
An Accurate and Efficient Method to Detect Critical Links to Maintain Information Flow in Network. ISMIS 2017: 116-126 - 2016
- [j50]Masahiro Kimura, Kazumi Saito, Kouzou Ohara, Hiroshi Motoda:
Speeding-up node influence computation for huge social networks. Int. J. Data Sci. Anal. 1(1): 3-16 (2016) - [j49]Kazumi Saito, Masahiro Kimura, Kouzou Ohara, Hiroshi Motoda:
Super mediator - A new centrality measure of node importance for information diffusion over social network. Inf. Sci. 329: 985-1000 (2016) - [c125]Kouzou Ohara, Kazumi Saito, Masahiro Kimura, Hiroshi Motoda:
Accelerating Computation of Distance Based Centrality Measures for Spatial Networks. DS 2016: 376-391 - [c124]Minsoo Choy, Daehoon Kim, Jae-Gil Lee, Heeyoung Kim, Hiroshi Motoda:
Looking back on the current day: interruptibility prediction using daily behavioral features. UbiComp 2016: 1004-1015 - [c123]Kazumi Saito, Masahiro Kimura, Kouzou Ohara, Hiroshi Motoda:
Detecting Critical Links in Complex Network to Maintain Information Flow/Reachability. PRICAI 2016: 419-432 - 2015
- [j48]Kazumi Saito, Kouzou Ohara, Masahiro Kimura, Hiroshi Motoda:
Change point detection for burst analysis from an observed information diffusion sequence of tweets. J. Intell. Inf. Syst. 44(2): 243-269 (2015) - [c122]Kanji Matsutani, Masahito Kumano, Masahiro Kimura, Kazumi Saito, Kouzou Ohara, Hiroshi Motoda:
Combining activity-evaluation information with NMF for trust-link prediction in social media. IEEE BigData 2015: 2263-2272 - [c121]Kouzou Ohara, Kazumi Saito, Masahiro Kimura, Hiroshi Motoda:
Change Point Detection for Information Diffusion Tree. Discovery Science 2015: 161-169 - [c120]Kouzou Ohara, Kazumi Saito, Masahiro Kimura, Hiroshi Motoda:
Resampling-Based Gap Analysis for Detecting Nodes with High Centrality on Large Social Network. PAKDD (1) 2015: 135-147 - [c119]Kazumi Saito, Kouzou Ohara, Masahiro Kimura, Hiroshi Motoda:
Efficient Learning of User Conformity on Review Score. SBP 2015: 182-192 - [e14]Tru H. Cao, Ee-Peng Lim, Zhi-Hua Zhou, Tu Bao Ho, David Wai-Lok Cheung, Hiroshi Motoda:
Advances in Knowledge Discovery and Data Mining - 19th Pacific-Asia Conference, PAKDD 2015, Ho Chi Minh City, Vietnam, May 19-22, 2015, Proceedings, Part I. Lecture Notes in Computer Science 9077, Springer 2015, ISBN 978-3-319-18037-3 [contents] - [e13]Tru H. Cao, Ee-Peng Lim, Zhi-Hua Zhou, Tu Bao Ho, David Wai-Lok Cheung, Hiroshi Motoda:
Advances in Knowledge Discovery and Data Mining - 19th Pacific-Asia Conference, PAKDD 2015, Ho Chi Minh City, Vietnam, May 19-22, 2015, Proceedings, Part II. Lecture Notes in Computer Science 9078, Springer 2015, ISBN 978-3-319-18031-1 [contents] - [e12]Xiaoli Li, Tru H. Cao, Ee-Peng Lim, Zhi-Hua Zhou, Tu Bao Ho, David Wai-Lok Cheung, Hiroshi Motoda:
Trends and Applications in Knowledge Discovery and Data Mining - PAKDD 2015 Workshops: BigPMA, VLSP, QIMIE, DAEBH, Ho Chi Minh City, Vietnam, May 19-21, 2015. Revised Selected Papers. Lecture Notes in Computer Science 9441, Springer 2015, ISBN 978-3-319-25659-7 [contents] - 2014
- [j47]Huan Liu, Jiawei Han, Hiroshi Motoda:
Uncovering deception in social media. Soc. Netw. Anal. Min. 4(1): 162 (2014) - [c118]Kouzou Ohara, Kazumi Saito, Masahiro Kimura, Hiroshi Motoda:
Resampling-Based Framework for Estimating Node Centrality of Large Social Network. Discovery Science 2014: 228-239 - [c117]Philip S. Yu, Masaru Kitsuregawa, Hiroshi Motoda, Bart Goethals, Minyi Guo, Longbing Cao, George Karypis, Irwin King, Wei Wang:
Welcome from DSAA 2014 chairs. DSAA 2014: 9-10 - [c116]Masahiro Kimura, Kazumi Saito, Kouzou Ohara, Hiroshi Motoda:
Efficient analysis of node influence based on SIR model over huge complex networks. DSAA 2014: 216-222 - [c115]Keito Hatta, Masahito Kumano, Masahiro Kimura, Kazumi Saito, Kouzou Ohara, Hiroshi Motoda:
Analyzing Mediator-Activity Effects for Trust-Network Evolution in Social Media. PRICAI 2014: 297-308 - [c114]Yuki Yamagishi, Seiya Okubo, Kazumi Saito, Kouzou Ohara, Masahiro Kimura, Hiroshi Motoda:
A Method to Divide Stream Data of Scores over Review Sites. PRICAI 2014: 913-919 - [c113]Kazumi Saito, Masahiro Kimura, Kouzou Ohara, Hiroshi Motoda:
A New Approach for Item Ranking Based on Review Scores Reflecting Temporal Trust Factor. SBP 2014: 161-168 - [e11]Marzena Kryszkiewicz, Chris Cornelis, Davide Ciucci, Jesús Medina-Moreno, Hiroshi Motoda, Zbigniew W. Ras:
Rough Sets and Intelligent Systems Paradigms - Second International Conference, RSEISP 2014, Held as Part of JRS 2014, Granada and Madrid, Spain, July 9-13, 2014. Proceedings. Lecture Notes in Computer Science 8537, Springer 2014, ISBN 978-3-319-08728-3 [contents] - 2013
- [j46]Masahiro Kimura, Kazumi Saito, Kouzou Ohara, Hiroshi Motoda:
Learning to predict opinion share and detect anti-majority opinionists in social networks. J. Intell. Inf. Syst. 41(1): 5-37 (2013) - [j45]Longbing Cao, Philip S. Yu, Hiroshi Motoda, Graham J. Williams:
Special issue on behavior computing. Knowl. Inf. Syst. 37(2): 245-249 (2013) - [j44]Zhi-Hua Zhou, Wee Sun Lee, Steven C. H. Hoi, Wray L. Buntine, Hiroshi Motoda:
Introduction: special issue of selected papers of ACML 2012. Mach. Learn. 92(2-3): 221-223 (2013) - [j43]Kazumi Saito, Masahiro Kimura, Kouzou Ohara, Hiroshi Motoda:
Detecting changes in information diffusion patterns over social networks. ACM Trans. Intell. Syst. Technol. 4(3): 55:1-55:23 (2013) - [c112]Kouzou Ohara, Kazumi Saito, Masahiro Kimura, Hiroshi Motoda:
Predictive Simulation Framework of Stochastic Diffusion Model for Identifying Top-K Influential Nodes. ACML 2013: 149-164 - [c111]Kazumi Saito, Kouzou Ohara, Masahiro Kimura, Hiroshi Motoda:
Detecting changes in content and posting time distributions in social media. ASONAM 2013: 572-578 - [c110]Kazumi Saito, Masahiro Kimura, Kouzou Ohara, Hiroshi Motoda:
Identifying Super-Mediators of Information Diffusion in Social Networks. Discovery Science 2013: 170-184 - [c109]Kazumi Saito, Masahiro Kimura, Kouzou Ohara, Hiroshi Motoda:
Which Targets to Contact First to Maximize Influence over Social Network. SBP 2013: 359-367 - [e10]Hiroshi Motoda, Zhaohui Wu, Longbing Cao, Osmar R. Zaïane, Min Yao, Wei Wang:
Advanced Data Mining and Applications, 9th International Conference, ADMA 2013, Hangzhou, China, December 14-16, 2013, Proceedings, Part I. Lecture Notes in Computer Science 8346, Springer 2013, ISBN 978-3-642-53913-8 [contents] - [e9]Hiroshi Motoda, Zhaohui Wu, Longbing Cao, Osmar R. Zaïane, Min Yao, Wei Wang:
Advanced Data Mining and Applications - 9th International Conference, ADMA 2013, Hangzhou, China, December 14-16, 2013, Proceedings, Part II. Lecture Notes in Computer Science 8347, Springer 2013, ISBN 978-3-642-53916-9 [contents] - [e8]Jian Pei, Vincent S. Tseng, Longbing Cao, Hiroshi Motoda, Guandong Xu:
Advances in Knowledge Discovery and Data Mining, 17th Pacific-Asia Conference, PAKDD 2013, Gold Coast, Australia, April 14-17, 2013, Proceedings, Part I. Lecture Notes in Computer Science 7818, Springer 2013, ISBN 978-3-642-37452-4 [contents] - [e7]Jian Pei, Vincent S. Tseng, Longbing Cao, Hiroshi Motoda, Guandong Xu:
Advances in Knowledge Discovery and Data Mining, 17th Pacific-Asia Conference, PAKDD 2013, Gold Coast, Australia, April 14-17, 2013, Proceedings, Part II. Lecture Notes in Computer Science 7819, Springer 2013, ISBN 978-3-642-37455-5 [contents] - [e6]Longbing Cao, Hiroshi Motoda, Jaideep Srivastava, Ee-Peng Lim, Irwin King, Philip S. Yu, Wolfgang Nejdl, Guandong Xu, Gang Li, Ya Zhang:
Behavior and Social Computing, International Workshop on Behavior and Social Informatics, BSI 2013, Gold Coast, QLD, Australia, April 14-17, 2013 and International Workshop on Behavior and Social Informatics and Computing, BSIC 2013, Beijing, China, August 3-9, 2013, Revised Selected Papers. Lecture Notes in Computer Science 8178, Springer 2013, ISBN 978-3-319-04047-9 [contents] - 2012
- [j42]Kazumi Saito, Masahiro Kimura, Kouzou Ohara, Hiroshi Motoda:
Efficient discovery of influential nodes for SIS models in social networks. Knowl. Inf. Syst. 30(3): 613-635 (2012) - [c108]Kazumi Saito, Kouzou Ohara, Masahiro Kimura, Hiroshi Motoda:
Burst Detection in a Sequence of Tweets Based on Information Diffusion Model. Discovery Science 2012: 239-253 - [c107]Shoko Kato, Akihiro Koide, Takayasu Fushimi, Kazumi Saito, Hiroshi Motoda:
Network Analysis of Three Twitter Functions: Favorite, Follow and Mention. PKAW 2012: 298-312 - [c106]Masahiro Kimura, Kazumi Saito, Kouzou Ohara, Hiroshi Motoda:
Opinion Formation by Voter Model with Temporal Decay Dynamics. ECML/PKDD (2) 2012: 565-580 - [c105]Kouzou Ohara, Kazumi Saito, Masahiro Kimura, Hiroshi Motoda:
Effect of In/Out-Degree Correlation on Influence Degree of Two Contrasting Information Diffusion Models. SBP 2012: 131-138 - [c104]Kazumi Saito, Masahiro Kimura, Kouzou Ohara, Hiroshi Motoda:
Graph embedding on spheres and its application to visualization of information diffusion data. WWW (Companion Volume) 2012: 1137-1144 - [i2]Kazumi Saito, Masahiro Kimura, Kouzou Ohara, Hiroshi Motoda:
Learning Asynchronous-Time Information Diffusion Models and its Application to Behavioral Data Analysis over Social Networks. CoRR abs/1204.4528 (2012) - 2011
- [j41]Masahiro Kimura, Kazumi Saito, Kouzou Ohara, Hiroshi Motoda:
Learning information diffusion model in a social network for predicting influence of nodes. Intell. Data Anal. 15(4): 633-652 (2011) - [c103]Takayasu Fushimi, Yamato Kubota, Kazumi Saito, Masahiro Kimura, Kouzou Ohara, Hiroshi Motoda:
Speeding Up Bipartite Graph Visualization Method. Australasian Conference on Artificial Intelligence 2011: 697-706 - [c102]Masahiro Kimura, Kazumi Saito, Kouzou Ohara, Hiroshi Motoda:
Detecting Anti-majority Opinionists Using Value-Weighted Mixture Voter Model. Discovery Science 2011: 150-164 - [c101]Kazumi Saito, Kouzou Ohara, Yuki Yamagishi, Masahiro Kimura, Hiroshi Motoda:
Learning Diffusion Probability Based on Node Attributes in Social Networks. ISMIS 2011: 153-162 - [c100]Kazumi Saito, Masahiro Kimura, Kouzou Ohara, Hiroshi Motoda:
Detecting Changes in Opinion Value Distribution for Voter Model. SBP 2011: 89-96 - [c99]Hiroshi Motoda:
Learning Information Diffusion Models from Observation and Its Application to Behavior Analysis. SocInfo 2011: 6 - [c98]Yuki Yamagishi, Kazumi Saito, Kouzou Ohara, Masahiro Kimura, Hiroshi Motoda:
Learning Attribute-weighted Voter Model over Social Networks. ACML 2011: 263-280 - [c97]Akihiro Koide, Kazumi Saito, Kouzou Ohara, Masahiro Kimura, Hiroshi Motoda:
Estimating Diffusion Probability Changes for AsIC-SIS Model. ACML 2011: 297-313 - [i1]Kouzou Ohara, Kazumi Saito, Masahiro Kimura, Hiroshi Motoda:
Efficient Detection of Hot Span in Information Diffusion from Observation. CoRR abs/1110.2659 (2011) - 2010
- [j40]Masahiro Kimura, Kazumi Saito, Ryohei Nakano, Hiroshi Motoda:
Extracting influential nodes on a social network for information diffusion. Data Min. Knowl. Discov. 20(1): 70-97 (2010) - [j39]Tu Bao Ho, Zhi-Hua Zhou, Hiroshi Motoda:
Editorial. Intell. Data Anal. 14(4): 437-438 (2010) - [c96]Masahiro Kimura, Kazumi Saito, Kouzou Ohara, Hiroshi Motoda:
Learning to Predict Opinion Share in Social Networks. AAAI 2010: 1364-1370 - [c95]Kazumi Saito, Masahiro Kimura, Kouzou Ohara, Hiroshi Motoda:
Discovery of Super-Mediators of Information Diffusion in Social Networks. Discovery Science 2010: 144-158 - [c94]Takayasu Fushimi, Kazumi Saito, Masahiro Kimura, Hiroshi Motoda, Kouzou Ohara:
Finding Relation between PageRank and Voter Model. PKAW 2010: 208-222 - [c93]Yuya Yoshikawa, Kazumi Saito, Hiroshi Motoda, Kouzou Ohara, Masahiro Kimura:
Acquiring Expected Influence Curve from Single Diffusion Sequence. PKAW 2010: 273-287 - [c92]Kazumi Saito, Masahiro Kimura, Kouzou Ohara, Hiroshi Motoda:
Selecting Information Diffusion Models over Social Networks for Behavioral Analysis. ECML/PKDD (3) 2010: 180-195 - [c91]Kazumi Saito, Masahiro Kimura, Kouzou Ohara, Hiroshi Motoda:
Efficient Estimation of Cumulative Influence for Multiple Activation Information Diffusion Model with Continuous Time Delay. PRICAI 2010: 244-255 - [c90]Kazumi Saito, Masahiro Kimura, Kouzou Ohara, Hiroshi Motoda:
Behavioral Analyses of Information Diffusion Models by Observed Data of Social Network. SBP 2010: 149-158 - [c89]Huan Liu, Hiroshi Motoda, Rudy Setiono, Zheng Zhao:
Preface. FSDM 2010: 1-3 - [c88]Huan Liu, Hiroshi Motoda, Rudy Setiono, Zheng Zhao:
Feature Selection: An Ever Evolving Frontier in Data Mining. FSDM 2010: 4-13 - [c87]Kazumi Saito, Masahiro Kimura, Kouzou Ohara, Hiroshi Motoda:
Generative Models of Information Diffusion with Asynchronous Timedelay. ACML 2010: 193-208 - [e5]Huan Liu, Hiroshi Motoda, Rudy Setiono, Zheng Zhao:
Proceedings of the Fourth International Workshop on Feature Selection in Data Mining, FSDM, held at PAKDD 2010, Hyderabad, India, June 21st, 2010. JMLR Proceedings 10, JMLR.org 2010 [contents]
2000 – 2009
- 2009
- [j38]Tu Bao Ho, Zhi-Hua Zhou, Hiroshi Motoda:
Preface. Int. J. Softw. Informatics 3(1): 1-2 (2009) - [j37]Masahiro Kimura, Kazumi Saito, Hiroshi Motoda:
Blocking links to minimize contamination spread in a social network. ACM Trans. Knowl. Discov. Data 3(2): 9:1-9:23 (2009) - [c86]Kazumi Saito, Masahiro Kimura, Kouzou Ohara, Hiroshi Motoda:
Learning Continuous-Time Information Diffusion Model for Social Behavioral Data Analysis. ACML 2009: 322-337 - [c85]Kazumi Saito, Masahiro Kimura, Hiroshi Motoda:
Discovering Influential Nodes for SIS Models in Social Networks. Discovery Science 2009: 302-316 - [c84]Masahiro Kimura, Kazumi Saito, Hiroshi Motoda:
Efficient Estimation of Influence Functions for SIS Model on Social Networks. IJCAI 2009: 2046-2051 - 2008
- [j36]Xindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep Ghosh, Qiang Yang, Hiroshi Motoda, Geoffrey J. McLachlan, Angus F. M. Ng, Bing Liu, Philip S. Yu, Zhi-Hua Zhou, Michael S. Steinbach, David J. Hand, Dan Steinberg:
Top 10 algorithms in data mining. Knowl. Inf. Syst. 14(1): 1-37 (2008) - [j35]Alexandre Termier, Marie-Christine Rousset, Michèle Sebag, Kouzou Ohara, Takashi Washio, Hiroshi Motoda:
DryadeParent, An Efficient and Robust Closed Attribute Tree Mining Algorithm. IEEE Trans. Knowl. Data Eng. 20(3): 300-320 (2008) - [c83]Masahiro Kimura, Kazumi Saito, Hiroshi Motoda:
Minimizing the Spread of Contamination by Blocking Links in a Network. AAAI 2008: 1175-1180 - [c82]Masahiro Kimura, Kazumasa Yamakawa, Kazumi Saito, Hiroshi Motoda:
Community analysis of influential nodes for information diffusion on a social network. IJCNN 2008: 1358-1363 - [c81]Kouzou Ohara, Masahiro Hara, Kiyoto Takabayashi, Hiroshi Motoda, Takashi Washio:
Pruning Strategies Based on the Upper Bound of Information Gain for Discriminative Subgraph Mining. PKAW 2008: 50-60 - [c80]Takayasu Fushimi, Takashi Kawazoe, Kazumi Saito, Masahiro Kimura, Hiroshi Motoda:
What Does an Information Diffusion Model Tell about Social Network Structure?. PKAW 2008: 122-136 - [c79]Kazumi Saito, Masahiro Kimura, Hiroshi Motoda:
Effective Visualization of Information Diffusion Process over Complex Networks. ECML/PKDD (2) 2008: 326-341 - [c78]Masahiro Kimura, Kazumi Saito, Hiroshi Motoda:
Solving the Contamination Minimization Problem on Networks for the Linear Threshold Model. PRICAI 2008: 977-984 - 2007
- [j34]Fuminori Adachi, Takashi Washio, Hiroshi Motoda:
Scientific Discovery of Dynamic Models Based on Scale-type Constraints. Inf. Media Technol. 2(1): 40-52 (2007) - [j33]Takashi Washio, Koutarou Nakanishi, Hiroshi Motoda:
A Classification Method Based on Subspace Clustering and Association Rules. New Gener. Comput. 25(3): 235-245 (2007) - [c77]Hiroshi Motoda:
Pattern Discovery from Graph-Structured Data - A Data Mining Perspective. IEA/AIE 2007: 12-22 - [c76]Yang Sok Kim, Byeong Ho Kang, Paul Compton, Hiroshi Motoda:
Search engine retrieval of changing information. WWW 2007: 1195-1196 - [p1]Takashi Washio, Hiroshi Motoda:
Communicability Criteria of Law Equations Discovery. Computational Discovery of Scientific Knowledge 2007: 98-119 - 2006
- [j32]Toshiko Wakaki, Hiroyuki Itakura, Masaki Tamura, Hiroshi Motoda, Takashi Washio:
A study on rough set-aided feature selection for automatic web-page classification. Web Intell. Agent Syst. 4(4): 431-441 (2006) - [c75]Hiroshi Motoda:
What Can We Do with Graph-Structured Data? - A Data Mining Perspective. Australian Conference on Artificial Intelligence 2006: 1-2 - [c74]Kenta Fukata, Takashi Washio, Hiroshi Motoda:
A Method to Search ARX Model Orders and Its Application to Sales Dynamics Analysis. ICDM Workshops 2006: 590-595 - [c73]Takashi Washio, Yasuo Shinnou, Katsutoshi Yada, Hiroshi Motoda, Takashi Okada:
Analysis on a Relation Between Enterprise Profit and Financial State by Using Data Mining Techniques. JSAI 2006: 305-316 - [c72]Phu Chien Nguyen, Kouzou Ohara, Akira Mogi, Hiroshi Motoda, Takashi Washio:
Constructing Decision Trees for Graph-Structured Data by Chunkingless Graph-Based Induction. PAKDD 2006: 390-399 - [c71]Kiyoto Takabayashi, Phu Chien Nguyen, Kouzou Ohara, Hiroshi Motoda, Takashi Washio:
Extracting Discriminative Patterns from Graph Structured Data Using Constrained Search. PKAW 2006: 64-74 - 2005
- [j31]Akihiro Inokuchi, Takashi Washio, Hiroshi Motoda:
A General Framework for Mining Frequent Subgraphs from Labeled Graphs. Fundam. Informaticae 66(1-2): 53-82 (2005) - [j30]Warodom Geamsakul, Tetsuya Yoshida, Kouzou Ohara, Hiroshi Motoda, Hideto Yokoi, Katsuhiko Takabayashi:
Constructing a Decision Tree for Graph-Structured Data and its Applications. Fundam. Informaticae 66(1-2): 131-160 (2005) - [j29]Takashi Washio, Hiroshi Motoda, Yuji Niwa:
Enhancing the plausibility of law equation discovery through cross check among multiple scale-type-based models. J. Exp. Theor. Artif. Intell. 17(1-2): 129-143 (2005) - [j28]Fuminori Adachi, Takashi Washio, Atsushi Fujimoto, Hiroshi Motoda, Hidemitsu Hanafusa:
Multi-structure Information Retrieval Method Based on Transformation Invariance. New Gener. Comput. 23(4): 291-313 (2005) - [c70]Tetsuya Yoshida, Akira Mogi, Kouzou Ohara, Hiroshi Motoda, Takashi Washio:
Refining diagnostic knowledge extracted from interferon therapy by graph-based induction. AMT 2005: 63-68 - [c69]Tetsuya Yoshida, Hiroshi Motoda:
Performance evaluation of fusing two different knowledge sources in Ripple Down Rules method. AMT 2005: 69-74 - [c68]Tetsuya Yoshida, Ryosuke Shoda, Hiroshi Motoda:
Graph Clustering Based on Structural Similarity of Fragments. Federation over the Web 2005: 97-114 - [c67]Takashi Washio, Fuminori Adachi, Hiroshi Motoda:
SCALETRACK: A System to Discover Dynamic Law Equations Containing Hidden States and Chaos. Discovery Science 2005: 253-266 - [c66]Alexandre Termier, Marie-Christine Rousset, Michèle Sebag, Kouzou Ohara, Takashi Washio, Hiroshi Motoda:
Efficient Mining of High Branching Factor Attribute Trees. ICDM 2005: 785-788 - [c65]Takashi Washio, Yuki Mitsunaga, Hiroshi Motoda:
Mining Quantitative Frequent Itemsets Using Adaptive Density-Based Subspace Clustering. ICDM 2005: 793-796 - [c64]Takashi Washio, Fuminori Adachi, Hiroshi Motoda:
Discovering Time Differential Law Equations Containing Hidden State Variables and Chaotic Dynamics. IJCAI 2005: 1642-1644 - [c63]Takashi Washio, Koutarou Nakanishi, Hiroshi Motoda, Takashi Okada:
Mutagenicity Risk Analysis by Using Class Association Rules. JSAI Workshops 2005: 436-445 - [c62]Phu Chien Nguyen, Kouzou Ohara, Hiroshi Motoda, Takashi Washio:
Cl-GBI: A Novel Approach for Extracting Typical Patterns from Graph-Structured Data. PAKDD 2005: 639-649 - [c61]Takashi Washio, Koutarou Nakanishi, Hiroshi Motoda:
Deriving Class Association Rules Based on Levelwise Subspace Clustering. PKDD 2005: 692-700 - [c60]Takashi Washio, Atsushi Fujimoto, Hiroshi Motoda:
A Framework of Numerical Basket Analysis. SAINT Workshops 2005: 340-343 - [c59]Kenichi Yoshida, Fuminori Adachi, Takashi Washio, Hiroshi Motoda, Teruaki Homma, Akihiro Nakashima, Hiromitsu Fujikawa, Katsuyuki Yamazaki:
Memory Management of Density-Based Spam Detector. SAINT 2005: 370-376 - [e4]Shusaku Tsumoto, Takahira Yamaguchi, Masayuki Numao, Hiroshi Motoda:
Active Mining, Second International Workshop, AM 2003, Maebashi, Japan, October 28, 2003, Revised Selected Papers. Lecture Notes in Computer Science 3430, Springer 2005, ISBN 3-540-26157-5 [contents] - [e3]Achim G. Hoffmann, Hiroshi Motoda, Tobias Scheffer:
Discovery Science, 8th International Conference, DS 2005, Singapore, October 8-11, 2005, Proceedings. Lecture Notes in Computer Science 3735, Springer 2005, ISBN 3-540-29230-6 [contents] - 2004
- [j27]Huan Liu, Hiroshi Motoda, Lei Yu:
A selective sampling approach to active feature selection. Artif. Intell. 159(1-2): 49-74 (2004) - [j26]Tetsuya Yoshida, Takuya Wada, Hiroshi Motoda, Takashi Washio:
Adaptive Ripple Down Rules method based on minimum description length principle. Intell. Data Anal. 8(3): 239-265 (2004) - [j25]Kenichi Yoshida, Fuminori Adachi, Takashi Washio, Hiroshi Motoda, Teruaki Homma, Akihiro Nakashima, Hiromitsu Fujikawa, Katsuyuki Yamazaki:
Density-Based Spam Detector. IEICE Trans. Inf. Syst. 87-D(12): 2678-2688 (2004) - [j24]Nada Lavrac, Hiroshi Motoda, Tom Fawcett:
Editorial: Data Mining Lessons Learned. Mach. Learn. 57(1-2): 5-11 (2004) - [j23]Nada Lavrac, Hiroshi Motoda, Tom Fawcett, Robert Holte, Pat Langley, Pieter W. Adriaans:
Introduction: Lessons Learned from Data Mining Applications and Collaborative Problem Solving. Mach. Learn. 57(1-2): 13-34 (2004) - [c58]Kouzou Ohara, Yukio Onishi, Noboru Babaguchi, Hiroshi Motoda:
Constructive Inductive Learning Based on Meta-attributes. Discovery Science 2004: 142-154 - [c57]Warodom Geamsakul, Takashi Matsuda, Tetsuya Yoshida, Kouzou Ohara, Hiroshi Motoda, Takashi Washio, Hideto Yokoi, Katsuhiko Takabayashi:
Analysis of Hepatitis Dataset by Decision Tree Based on Graph-Based Induction. JSAI Workshops 2004: 5-28 - [c56]Masayuki Numao, Takahira Yamaguchi, Shusaku Tsumoto, Hiroshi Motoda:
Workshop on Active Mining (AM-2004). JSAI Workshops 2004: 463 - [c55]Kenichi Yoshida, Fuminori Adachi, Takashi Washio, Hiroshi Motoda, Teruaki Homma, Akihiro Nakashima, Hiromitsu Fujikawa, Katsuyuki Yamazaki:
Density-based spam detector. KDD 2004: 486-493 - [c54]Katsutoshi Yada, Hiroshi Motoda, Takashi Washio, Asuka Miyawaki:
Consumer Behavior Analysis by Graph Mining Technique. KES 2004: 800-806 - [c53]Amit Mandvikar, Huan Liu, Hiroshi Motoda:
Compact Dual Ensembles for Active Learning. PAKDD 2004: 293-297 - [c52]Phu Chien Nguyen, Takashi Washio, Kouzou Ohara, Hiroshi Motoda:
Using a Hash-Based Method for Apriori-Based Graph Mining. PKDD 2004: 349-361 - 2003
- [j22]Akihiro Inokuchi, Takashi Washio, Hiroshi Motoda:
Complete Mining of Frequent Patterns from Graphs: Mining Graph Data. Mach. Learn. 50(3): 321-354 (2003) - [j21]Takashi Washio, Hiroshi Motoda:
State of the art of graph-based data mining. SIGKDD Explor. 5(1): 59-68 (2003) - [j20]Setsuo Arikawa, Koichi Furukawa, Shinichi Morishita, Hiroshi Motoda:
Preface. Theor. Comput. Sci. 292(2): 343-344 (2003) - [c51]Shusaku Tsumoto, Takahira Yamaguchi, Masayuki Numao, Hiroshi Motoda:
Active Mining Project: Overview. Active Mining 2003: 1-10 - [c50]Warodom Geamsakul, Tetsuya Yoshida, Kouzou Ohara, Hiroshi Motoda, Takashi Washio, Hideto Yokoi, Katsuhiko Takabayashi:
Extracting Diagnostic Knowledge from Hepatitis Dataset by Decision Tree Graph-Based Induction. Active Mining 2003: 126-151 - [c49]Warodom Geamsakul, Takashi Matsuda, Tetsuya Yoshida, Hiroshi Motoda, Takashi Washio:
Performance Evaluation of Decision Tree Graph-Based Induction. Discovery Science 2003: 128-140 - [c48]Fuminori Adachi, Takashi Washio, Hiroshi Motoda, Atsushi Fujimoto, Hidemitsu Hanafusa:
Development of Generic Search Method Based on Transformation Invariance. ISMIS 2003: 486-495 - [c47]Warodom Geamsakul, Takashi Matsuda, Tetsuya Yoshida, Hiroshi Motoda, Takashi Washio:
Classifier Construction by Graph-Based Induction for Graph-Structured Data. PAKDD 2003: 52-62 - [c46]Huan Liu, Lei Yu, Manoranjan Dash, Hiroshi Motoda:
Active Feature Selection Using Classes. PAKDD 2003: 474-485 - 2002
- [j19]Takashi Matsuda, Hiroshi Motoda, Takashi Washio:
Graph-based induction and its applications. Adv. Eng. Informatics 16(2): 135-143 (2002) - [j18]Huan Liu, Hiroshi Motoda:
On Issues of Instance Selection. Data Min. Knowl. Discov. 6(2): 115-130 (2002) - [j17]Masahiro Terabe, Takashi Washio, Hiroshi Motoda, Osamu Katai, Tetsuo Sawaragi:
Attribute Generation Based on Association Rules. Knowl. Inf. Syst. 4(3): 329-349 (2002) - [c45]Takashi Matsuda, Hiroshi Motoda, Tetsuya Yoshida, Takashi Washio:
Mining Patterns from Structured Data by Beam-Wise Graph-Based Induction. Discovery Science 2002: 422-429 - [c44]Takashi Washio, Hiroshi Motoda:
Toward the Discovery of First Principle Based Scientific Law Equations. Progress in Discovery Science 2002: 553-564 - [c43]Tetsuya Yoshida, Hiroshi Motoda, Takashi Washio:
Adaptive Ripple Down Rules Method based on Minimum Description Length Principle. ICDM 2002: 530-537 - [c42]Huan Liu, Hiroshi Motoda, Lei Yu:
Feature Selection with Selective Sampling. ICML 2002: 395-402 - [c41]Takuya Wada, Tetsuya Yoshida, Hiroshi Motoda, Takashi Washio:
Extension of the RDR Method That Can Adapt to Environmental Changes and Acquire Knowledge from Both Experts and Data. PRICAI 2002: 218-227 - [c40]Keisei Fujiwara, Tetsuya Yoshida, Hiroshi Motoda, Takashi Washio:
Case Generation Method for Constructing an RDR Knowledge Base. PRICAI 2002: 228-237 - [c39]Takashi Matsuda, Hiroshi Motoda, Tetsuya Yoshida, Takashi Washio:
Knowledge Discovery from Structured Data by Beam-Wise Graph-Based Induction. PRICAI 2002: 255-264 - 2001
- [j16]Takuya Wada, Tadashi Horiuchi, Hiroshi Motoda, Takashi Washio:
A Description Length-Based Decision Criterion for Default Knowledge in the Ripple Down Rules Method. Knowl. Inf. Syst. 3(2): 146-167 (2001) - [c38]Takashi Washio, Hiroshi Motoda, Yuji Niwa:
Discovering Admissible Simultaneous Equation Models from Observed Data. ECML 2001: 539-551 - [c37]Masahiro Terabe, Takashi Washio, Hiroshi Motoda:
S3Bagging: Fast Classifier Induction Method with Subsampling and Bagging. IDA 2001: 177-186 - [c36]Takayuki Ikeda, Takashi Washio, Hiroshi Motoda:
Basket Analysis on Meningitis Data. JSAI Workshops 2001: 516-524 - [c35]Takuya Wada, Hiroshi Motoda, Takashi Washio:
Knowledge Acquisition from Both Human Expert and Data. PAKDD 2001: 550-561 - [c34]Makoto Tsukada, Takashi Washio, Hiroshi Motoda:
Automatic Web-Page Classification by Using Machine Learning Methods. Web Intelligence 2001: 303-313 - 2000
- [j15]Hiroshi Motoda, Setsuo Arikawa:
Special Feature on Discovery Science. New Gener. Comput. 18(1): 13-16 (2000) - [c33]Takashi Matsuda, Tadashi Horiuchi, Hiroshi Motoda, Takashi Washio:
Graph-Based Induction for General Graph Structured Data and Its Application to Chemical Compound Data. Discovery Science 2000: 99-111 - [c32]Takashi Washio, Hiroshi Motoda, Yuji Niwa:
Enhancing the Plausibility of Law Equation Discovery. ICML 2000: 1127-1134 - [c31]Manoranjan Dash, Huan Liu, Hiroshi Motoda:
Consistency Based Feature Selection. PAKDD 2000: 98-109 - [c30]Takashi Matsuda, Tadashi Horiuchi, Hiroshi Motoda, Takashi Washio:
Extension of Graph-Based Induction for General Graph Structured Data. PAKDD 2000: 420-431 - [c29]Akihiro Inokuchi, Takashi Washio, Hiroshi Motoda:
An Apriori-Based Algorithm for Mining Frequent Substructures from Graph Data. PKDD 2000: 13-23
1990 – 1999
- 1999
- [c28]Manoranjan Dash, Huan Liu, Hiroshi Motoda:
Feature Selection Using Consistency Measure. Discovery Science 1999: 319-320 - [c27]Akihiro Inokuchi, Takashi Washio, Hiroshi Motoda:
Derivation of the Topology Structure from Massive Graph Data. Discovery Science 1999: 330-332 - [c26]Takashi Matsuda, Tadashi Horiuchi, Hiroshi Motoda, Takashi Washio, Kohei Kumazawa, Naohide Arai:
Graph-Based Induction for General Graph Structured Data. Discovery Science 1999: 340-342 - [c25]Takashi Washio, Hiroshi Motoda, Yuji Niwa:
Discovering Admissible Model Equations from Observed Data Based on Scale-Types and Identity Constrains. IJCAI 1999: 772-779 - [c24]Hiroshi Motoda:
Computer Assisted Discovery of First Principle Equations from Numeric Data (Abstract). PAKDD 1999: 2 - [c23]Masahiro Terabe, Osamu Katai, Tetsuo Sawaragi, Takashi Washio, Hiroshi Motoda:
A Data Pre-processing Method Using Association Rules of Attributes for Improving Decision Tree. PAKDD 1999: 143-147 - [c22]Takuya Wada, Tadashi Horiuchi, Hiroshi Motoda, Takashi Washio:
Characterization of Default Knowledge in Ripple Down Rules Method. PAKDD 1999: 284-295 - [c21]Akihiro Inokuchi, Takashi Washio, Hiroshi Motoda, Kouhei Kumasawa, Naohide Arai:
Basket Analysis for Graph Structured Data. PAKDD 1999: 420-431 - 1998
- [b1]Huan Liu, Hiroshi Motoda:
Feature Selection for Knowledge Discovery and Data Mining. The Springer International Series in Engineering and Computer Science 454, Kluwer 1998, ISBN 978-1-4613-7604-0, pp. 1-214 - [j14]Hiroshi Motoda, Kenichi Yoshida:
Machine Learning Techniques to Make Computers Easier to Use. Artif. Intell. 103(1-2): 295-321 (1998) - [j13]Huan Liu, Hiroshi Motoda:
Guest Editors' Introduction: Feature Transformation and Subset Selection. IEEE Intell. Syst. 13(2): 26-28 (1998) - [j12]Hing-Yan Lee, Hongjun Lu, Hiroshi Motoda:
Knowledge discovery and data mining. Knowl. Based Syst. 10(7): 401-402 (1998) - [j11]Takashi Washio, Hiroshi Motoda:
Discovery of first-principle equations based on scale-type-based and data-driven reasoning. Knowl. Based Syst. 10(7): 403-411 (1998) - [c20]Takashi Washio, Hiroshi Motoda:
Discovering Admissible Simultaneous Equations of Large Scale Systems. AAAI/IAAI 1998: 189-196 - [c19]Takashi Washio, Hiroshi Motoda:
Development of SDS2: Smart Discovery System for Simultaneous Equation Systems. Discovery Science 1998: 352-363 - [c18]Huan Liu, Hiroshi Motoda, Manoranjan Dash:
A Monotonic Measure for Optimal Feature Selection. ECML 1998: 101-106 - [c17]Takashi Washio, Hiroshi Motoda:
Mining Association Rules for Estimation and Prediction. PAKDD 1998: 417-419 - [e2]Setsuo Arikawa, Hiroshi Motoda:
Discovery Science, First International Conference, DS '98, Fukuoka, Japan, December 14-16, 1998, Proceedings. Lecture Notes in Computer Science 1532, Springer 1998, ISBN 3-540-65390-2 [contents] - [e1]Hing-Yan Lee, Hiroshi Motoda:
PRICAI'98, Topics in Artificial Intelligence, 5th Pacific Rim International Conference on Artificial Intelligence, Singapore, November 22-27, 1998, Proceedings. Lecture Notes in Computer Science 1531, Springer 1998, ISBN 3-540-65271-X [contents] - 1997
- [j10]Byeong Ho Kang, Kenichi Yoshida, Hiroshi Motoda, Paul Compton:
Help Desk System with Intelligent Interface. Appl. Artif. Intell. 11(7-8): 611-631 (1997) - [c16]Takashi Washio, Hiroshi Motoda:
Discovering Admissible Models of Complex Systems Based on Scale-Types and Idemtity Constraints. IJCAI (2) 1997: 810-819 - [c15]Hiroshi Motoda, Kenichi Yoshida:
Machine Learning Techniques to Make Computers Easier to Use. IJCAI 1997: 1622-1631 - 1996
- [j9]Kenichi Yoshida, Hiroshi Motoda:
Automated user modeling for intelligent interface. Int. J. Hum. Comput. Interact. 8(3): 237-258 (1996) - [c14]Takashi Washio, Hiroshi Motoda:
A History-Oriented Envisioning Method. PRICAI 1996: 312-323 - [c13]Shingo Nishioka, Atsuo Kawaguchi, Hiroshi Motoda:
Process Labeled Kernel Profiling: A New Facility to Profile System Activities. USENIX ATC 1996: 295-306 - 1995
- [j8]Kenichi Yoshida, Hiroshi Motoda:
CLIP: Concept Learning from Inference Patterns. Artif. Intell. 75(1): 63-92 (1995) - [j7]Riichiro Mizoguchi, Hiroshi Motoda:
Expert Systems Research in Japan. IEEE Expert 10(4): 14-23 (1995) - [c12]Kenichi Yoshida, Hiroshi Motoda:
Tables, Graphs and Logic for Induction. Machine Intelligence 15 1995: 298-311 - [c11]Atsuo Kawaguchi, Shingo Nishioka, Hiroshi Motoda:
A Flash-Memory Based File System. USENIX 1995: 155-164 - 1994
- [j6]Masaki Suwa, Hiroshi Motoda:
PCLEARN: A Computer Model for Learning Perceptual Chunks. AI Commun. 7(2): 114-125 (1994) - [j5]Kenichi Yoshida, Hiroshi Motoda, Nitin Indurkhya:
Graph-based induction as a unified learning framework. Appl. Intell. 4(3): 297-316 (1994) - [c10]N. Hari Narayanan, Masaki Suwa, Hiroshi Motoda:
How Things Appear to Work: Predicting Behaviors from Device Diagrams. AAAI 1994: 1161-1167 - 1993
- [c9]Makoto Iwayama, Nitin Indurkhya, Hiroshi Motoda:
A New Algorithm for Automatic Configuration of Hidden Markov Models. ALT 1993: 237-250 - [c8]Kenichi Yoshida, Hiroshi Motoda, Nitin Indurkhya:
Unifying Learning Methods by Colored Digraphs. ALT 1993: 342-355 - [c7]Masaki Suwa, Hiroshi Motoda:
A Perceptual Criterion for Visually Controlling Learning. ALT 1993: 356-369 - [c6]Masaki Suwa, Hiroshi Motoda:
On dealing with dynamic utility of learned knowledge. Machine Intelligence 14 1993: 113- - 1992
- [c5]Masaki Suwa, Hiroshi Motoda:
Learning Perceptually Chunked Macro Operators. Machine Intelligence 13 1992: 419-440 - 1991
- [j4]Hiroshi Motoda, Riichiro Mizoguchi, John H. Boose, Brian R. Gaines:
Knowledge Acquisition for Knowledge-Based Systems. IEEE Expert 6(4): 53-64 (1991) - [j3]Atsuo Kawaguchi, Hiroshi Motoda, Riichiro Mizoguchi:
Interview-Based Knowledge Acquisition Using Dynamic Analysis. IEEE Expert 6(5): 47-60 (1991) - [c4]Masaki Suwa, Hiroshi Motoda:
The use of abstract primitives in representing the meanings of "Verbs" for understanding metaphors. ALT 1991: 231-242 - 1990
- [j2]Hiroshi Motoda:
The Current Status of Expert System Development and Related Technologies in Japan. IEEE Expert 5(4): 3-11 (1990)
1980 – 1989
- 1989
- [j1]Masaki Suwa, Hiroshi Motoda:
Acquisition of associative knowledge by the frustration-based learning method in an auxiliary-line problem. Knowl. Acquis. 1(1): 113-137 (1989) - 1988
- [c3]Akito Sakurai, Hiroshi Motoda:
Proving Definite Clauses without Explicit Use of Inductions. LP 1988: 11-26 - 1984
- [c2]Hiroshi Motoda, Naoyuki Yamada, Kenichi Yoshida:
A Knowledge based System for Plant Diagnosis. FGCS 1984: 582-588 - 1983
- [c1]Naoyuki Yamada, Hiroshi Motoda:
A Diagnosis Method of Dynamic System Using the Knowledge on System Description. IJCAI 1983: 225-229
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-21 00:00 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint