1. |
L. Cui, P. Zhang,J. Che, “Overview of Deep Neural Network based Classification Algorithms for Remote Sensing Images,” Computer Science, Vol. 45, No. S1, pp. 50-53, 2018
|
2. |
Y. Zhang, H. T. Yang,C. H. Yuan, “A Survey of Remote Sensing Image Classification Methods,” Journal of Ordnance Equipment Engineering, Vol. 39, No. 8, pp. 108-111, 2018
|
3. |
C. Peng, X. Y. Zhang, G. Yu, G. M. Luo,J. Sun, “Large Kernel Matters-Improve Semantic Segmentation by Global Convolutional Network,” inProceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4353-4361, 2017
|
4. |
J. Long, E. Shelhamer,T. Darrell, “Fully Convolutional Networks for Semantic Segmentation,” inProceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431-3440, 2015
|
5. |
Y. C.Wei and Y. Zhao, “A Review on Image Semantic Segmentation based on DCNN,” Journal of Beijing Jiaotong University, Vol. 40, No. 4, pp. 82-91, 2016
|
6. |
H. S. Zhao, J. P. Shi, X. J. Qi, X. G. Wang,J. Y. Jia, “Pyramid Scene Parsing Network,” inProceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881-2890, 2017
|
7. |
O. Ronneberger, P. Fischer,T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation,” inProceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234-241, 2015
|
8. |
V. Badrinarayanan, A. Kendall,R. Cipolla, “Segnet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 39, No. 12, pp. 2481-2495, 2017
|
9. |
Y. Lecun, L. Bottou, Y. Bengio,P. Haffner, “Gradient-based Learning Applied to Document Recognition,” Proceedings of the IEEE, Vol. 86, No. 11, pp. 2278-2324, 1998
|
10. |
A. Krizhevsky, I. Sutskever,G. E. Hinton, “Imagenet Classification with Deep Convolutional Neural Networks,” inProceedings of the 25th International Conference on ImageNet Classification with Deep Convolutional Neural Netwoks, pp. 1097-1105, 2012
|
11. |
K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition,” arXiv preprint arXiv:1409.1556, 2014
|
12. |
C. Szegedy, W. Liu, Y. Q. Jia, P. Sermanet, S. Reed, D. Anguelov, et al., “Going Deeper with Convolutions,” inProceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-9, 2015
|
13. |
K. He, X. Y. Zhang, S. Q. Ren,J. Sun, “Deep Residual Learning for Image Recognition,” inProceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778, 2016
|
14. |
I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, et al., “Generative Adversarial Nets,” inProceedings of the 27th International Conference on Neural Information Processing Systems, pp. 2672-2680, 2014
|
15. |
X. C.Zhu and G. J. Tang, “A Survey on Generative Adversarial Networks in Image Processing,” Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition), Vol. 39, No. 3, pp. 1-12, 2019
|
16. |
M. Mirza and S. Osindero, “Conditional Generative Adversarial Nets,” arXiv preprint arXiv:1411.1784, 2014
|
17. |
E. L. Denton, S. Chintala, A. Szlam,R. Fergus, “Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks,” inProceedings of Advances in Neural Information Processing Systems, pp. 1486-1494, 2015
|
18. |
L. Zhu, Y. S. Chen, P. Ghamisi,J. A. Benediktsson, “Generative Adversarial Networks for Hyperspectral Image Classification,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 56, No. 9, pp. 5046-5063, 2018
|
19. |
F. Z. Nan, Y. R. Qian, Y. N. Xing,J. X. Zhao, “Survey of Single Image Super Resolution based on Deep Learning,”Application Research of Computers, 2019
|
20. |
C. Dong, C. C. Loy, K. M. He,X. O. Tang, “Image Super-Resolution using Deep Convolutional Networks,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 38, No. 2, pp. 295-307, 2016
|
21. |
C. Dong, C. C. Loy,X. Tang, “Accelerating the Super-Resolution Convolutional Neural Network,” inProceedings of European Conference on Computer Vision, pp. 391-407, 2016
|
22. |
G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely Connected Convolutional Networks,” inProceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700-4708, 2017
|
23. |
T. Tong, G. Li, X. J. Liu,Q. Q. Gao, “Image Super-Resolution using Dense Skip Connections,” inProceedings of the IEEE International Conference on Computer Vision, pp. 4799-4807, 2017
|
24. |
C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, et al., “Photo-Realistic Single Image Super-Resolution using a Generative Adversarial Network,” inProceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681-4690, 2017
|
25. |
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens,Z. Wojna, “Rethinking the Inception Architecture for Computer Vision,” inProceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818-2826, 2016
|