[1] Zhu X.X., Tuia D., Mou L., Xia G.S., Zhang L., Xu F. and Fraundorfer F., 2017. Deep learning in remote sensing: A comprehensive review and list of resources. IEEE geoscience and remote sensing magazine,5(4), pp.8-36. [2] Valente J., António J., Mora C. and Jardim S., 2023. Developments in image processing using deep learning and reinforcement learning.Journal of Imaging, 9(10), p.207. [3] Van der Meer, F.D. and De Jong, S.M. eds., 2011. Imaging spectrometry: basic principles and prospective applications (Vol. 4). Springer Science & Business Media. [4] Lewis M., Jooste V. and de Gasparis A.A., 2001. Discrimination of arid vegetation with airborne multispectral scanner hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing,39(7), pp.1471-1479. [5] Qureshi R., Uzair M., Khurshid K. and Yan H., 2019. Hyperspectral document image processing: Applications, challenges and future prospects.Pattern Recognition, 90, pp.12-22. [6] LeCun Y., Bengio Y. and Hinton G., 2015. Deep learning. nature,521(7553), pp.436-444. [7] Krizhevsky A., Sutskever I. and Hinton G.E., 2017. ImageNet classification with deep convolutional neural networks. Communications of the ACM,60(6), pp.84-90. [8] Plaza A., Benediktsson J.A., Boardman J.W., Brazile J., Bruzzone L., Camps-Valls G., Chanussot J., Fauvel M., Gamba P., Gualtieri A. and Marconcini M., 2009. Recent advances in techniques for hyperspectral image processing.Remote sensing of environment, 113, pp.S110-S122. [9] Elmasry G., Kamruzzaman M., Sun D.W. and Allen P., 2012. Principles and applications of hyperspectral imaging in quality evaluation of agro-food products: a review. Critical reviews in food science and nutrition,52(11), pp.999-1023. [10] Kolesnikov A., Beyer L., Zhai X., Puigcerver J., Yung J., Gelly S. and Houlsby N., 2020. Big transfer (bit): General visual representation learning. In Computer Vision-ECCV 2020: 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part V 16 (pp. 491-507). Springer International Publishing. [11] Gao Q., Lim S. and Jia X., 2018. Hyperspectral image classification using convolutional neural networks and multiple feature learning.Remote Sensing, 10(2), p.299. [12] Xia J., Falco N., Benediktsson J.A., Du P. and Chanussot J., 2017. Hyperspectral image classification with rotation random forest via KPCA. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,10(4), pp.1601-1609. [13] Wang C., Liu B., Liu L., Zhu Y., Hou J., Liu P. and Li X., 2021. A review of deep learning used in the hyperspectral image analysis for agriculture. Artificial Intelligence Review,54(7), pp.5205-5253. [14] Nalepa J.,2021. Recent advances in multi-and hyperspectral image analysis.Sensors, 21(18), p.6002. [15] Khan M.J., Khan H.S., Yousaf A., Khurshid K. and Abbas A., 2018. Modern trends in hyperspectral image analysis: A review.Ieee Access, 6, pp.14118-14129. [16] Signoroni A., Savardi M., Baronio A. and Benini S., 2019. Deep learning meets hyperspectral image analysis: A multidisciplinary review.Journal of imaging, 5(5), p.52. [17] Machidon A.L., Del Frate F., Picchiani M., Machidon O.M. and Ogrutan P.L., 2020. Geometrical approximated principal component analysis for hyperspectral image analysis.Remote Sensing, 12(11), p.1698. [18] Saha, D. and Manickavasagan, A., 2021. Machine learning techniques for analysis of hyperspectral images to determine quality of food products: A review.Current Research in Food Science, 4, pp.28-44. [19] Rangnekar A., Mokashi N., Ientilucci E.J., Kanan C. and Hoffman M.J., 2020. Aerorit: A new scene for hyperspectral image analysis. IEEE Transactions on Geoscience and Remote Sensing,58(11), pp.8116-8124. [20] Lowe A., Harrison N. and French A.P., 2017. Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress.Plant methods, 13(1), p.80. [21] KAVZOĞLU, T. and Yilmaz, E.Ö., 2022. Analysis of patch and sample size effects for 2D-3D CNN models using multiplatform dataset: hyperspectral image classification of ROSIS and Jilin-1 GP01 imagery. Turkish Journal of Electrical Engineering and Computer Sciences,30(6), pp.2124-2144. [22] Zhou M., Samiappan S., Worch E. and Ball J.E., 2020, September. Hyperspectral Image Classification Using Fisher's Linear Discriminant Analysis Feature Reduction with Gabor Filtering and CNN. In IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium(pp. 493-496). IEEE. [23] Yuan S., Sun Y., He W., Gu Q., Xu S., Mao Z. and Tu S., 2022. Mslm-rf: A spatial feature enhanced random forest for on-board hyperspectral image classification.IEEE Transactions on Geoscience and Remote Sensing, 60, pp.1-17. [24] Kishore K.M.S., Behera M.K., Chakravarty S. and Dash S., 2020, December. Hyperspectral image classification using minimum noise fraction and random forest. In 2020 IEEE International Women in Engineering (WIE) Conference on Electrical and Computer Engineering (WIECON-ECE)(pp. 296-299). IEEE. [25] Reshma R., Sowmya V. and Soman K.P., 2016. Dimensionality reduction using band selection technique for kernel based hyperspectral image classification.Procedia Computer Science, 93, pp.396-402. [26] Lee, H. and Kwon, H., 2016, July. Contextual deep CNN based hyperspectral classification. In 2016 IEEE international geoscience and remote sensing symposium (IGARSS)(pp. 3322-3325). IEEE. [27] Mounika K., Aravind K., Yamini M., Navyasri P., Dash S. and Suryanarayana V., 2021, October. Hyperspectral image classification using SVM with PCA. In 2021 6th International Conference on Signal Processing, Computing and Control (ISPCC)(pp. 470-475). IEEE. |