[1]
|
A. Aguglia and L. Giuzzi, Intersection sets, three-character multisets and associated codes, Des. Codes Cryptogr., 83 (2017), 269-282.
doi: 10.1007/s10623-016-0302-8.
|
[2]
|
T. L. Alderson, A note on full weight spectrum codes, Trans. on Combinatorics, 8 (2019), 15-22.
doi: 10.22108/toc.2019.112621.1584.
|
[3]
|
D. Bartoli, C. Zanella and F. Zullo, A new family of maximum scattered linear sets in $\text{PG}(1, q^6)$, Ars Math. Contemp., 19 (2020), 125-145.
doi: 10.26493/1855-3974.2137.7fa.
|
[4]
|
A. Blokhuis and M. Lavrauw, Scattered spaces with respect to a spread in $\text{PG}(n, q)$, Geom. Dedicata, 81 (2000), 231-243.
doi: 10.1023/A:1005283806897.
|
[5]
|
R. Calderbank and J. M. Goethals, Three-weight codes and association schemes, Philips J. Res., 39 (1984), 143-152.
|
[6]
|
A. R. Calderbank and W. M. Kantor, The geometry of two-weight codes, Bull. London Math. Soc., 18 (1986), 97-122.
doi: 10.1112/blms/18.2.97.
|
[7]
|
B. Csajbók, G. Marino, O. Polverino and C. Zanella, A new family of MRD-codes, Linear Algebra Appl., 548 (2018), 203-220.
doi: 10.1016/j.laa.2018.02.027.
|
[8]
|
B. Csajbók, G. Marino, O. Polverino and Y. Zhou, Maximum Rank-Distance codes with maximum left and right idealisers, Discrete Math., 343 (2020), 111985, 16pp.
doi: 10.1016/j.disc.2020.111985.
|
[9]
|
B. Csajbók, G. Marino, O. Polverino and F. Zullo, Generalising the scattered property of subspaces, in Combinatorica, arXiv: 1906.10590.
|
[10]
|
B. Csajbók, G. Marino and F. Zullo, New maximum scattered linear sets of the projective line, Finite Fields Appl., 54 (2018), 133-150.
doi: 10.1016/j.ffa.2018.08.001.
|
[11]
|
M. A. de Boer, Almost MDS codes, Des. Codes Cryptogr., 9 (1996), 143-155.
doi: 10.1007/BF00124590.
|
[12]
|
P. Delsarte, Bilinear forms over a finite field, with applications to coding theory, J. Combin. Theory Ser. A, 25 (1978), 226-241.
doi: 10.1016/0097-3165(78)90015-8.
|
[13]
|
K. Ding and C. Ding, A class of two-weight and three-weight codes and their applications in secret sharing, IEEE Trans. Inform. Theory, 61 (2015), 5835-5842.
doi: 10.1109/TIT.2015.2473861.
|
[14]
|
K. Ding K. and C. Ding, Binary linear codes with three weights, IEEE Commun. Lett., 18 (2014), 1879-1882.
|
[15]
|
C. Ding, C. Li, N. Li and Z. Zhou, Three-weight cyclic codes and their weight distributions, Discret. Math., 339 (2016), 415-427.
doi: 10.1016/j.disc.2015.09.001.
|
[16]
|
C. Ding, J. Luo and H. Niederreiter, Two-weight codes punctured from irreducible cyclic codes, Proc. Ist Int. Workshop Coding theory and Cryptogr., (2008), 119–124.
doi: 10.1142/9789812832245_0009.
|
[17]
|
C. Ding and H. Niederreiter, Cyclotomic linear codes of order $3$, IEEE Trans. Inf. Theory, 53 (2007), 2274-2277.
doi: 10.1109/TIT.2007.896886.
|
[18]
|
C. Ding and X. Wang, A coding theory construction of new systematic authentication codes, Theoretical computer science, 330 (2005), 81-99.
doi: 10.1016/j.tcs.2004.09.011.
|
[19]
|
N. Durante, On sets with few intersection numbers in finite projective and affine spaces, Electron. J. Combin., 21 (2014), 4.13, 18 pp.
|
[20]
|
È. Gabidulin, Theory of codes with maximum rank distance, Problems of Information Transmission, 21 (1985), 3-16.
|
[21]
|
A. Kshevetskiy and E. Gabidulin, The new construction of rank codes, International Symposium on Information Theory, (2005), 2105–2108.
doi: 10.1109/ISIT.2005.1523717.
|
[22]
|
M. Lavrauw, Scattered Spaces with Respect to Spreads, and Eggs in Finite Projective Spaces, Ph.D thesis, Eindhoven University of Technology, 2001.
|
[23]
|
D. Liebhold and G. Nebe, Automorphism groups of Gabidulin-like codes, Arch. Math., 107 (2016), 355-366.
doi: 10.1007/s00013-016-0949-4.
|
[24]
|
G. Lunardon, MRD-codes and linear sets, J. Combin. Theory Ser. A, 149 (2017), 1-20.
doi: 10.1016/j.jcta.2017.01.002.
|
[25]
|
G. Lunardon, R. Trombetti and Y. Zhou, Generalized twisted gabidulin codes, J. Combin. Theory Ser. A, 159 (2018), 79-106.
doi: 10.1016/j.jcta.2018.05.004.
|
[26]
|
G. Lunardon, R. Trombetti and Y. Zhou, On kernels and nuclei of rank metric codes, J. Algebraic Combin., 46 (2017), 313-340.
doi: 10.1007/s10801-017-0755-5.
|
[27]
|
S. Mehta, V. Saraswat and S. Sen, Secret sharing using near-MDS codes, Codes, Cryptology, and Information Security (C2SI 2019), LNCS, Springer, 11445 (2019), 195–214.
|
[28]
|
V. Napolitano, O. Polverino, G. Zini and F. Zullo, Linear sets from projection of Desarguesian spreads, arXiv: 2001.08685.
|
[29]
|
G. Marino, M. Montanucci and F. Zullo, MRD-codes arising from the trinomial $x^q + x^{q^3}+ cx^{q^5} \in {\mathbb F}_{q^6}[x]$, Linear Algebra Appl., 591 (2020), 99-114.
doi: 10.1016/j.laa.2020.01.004.
|
[30]
|
O. Polverino and F. Zullo, On the number of roots of some linearized polynomials, Linear Algebra Appl., 601 (2020), 189-218.
doi: 10.1016/j.laa.2020.05.009.
|
[31]
|
J. Sheekey, A new family of linear maximum rank distance codes, Adv. Math. Commun., 10 (2016), 475-488.
doi: 10.3934/amc.2016019.
|
[32]
|
J. Sheekey and G. Van de Voorde, Rank-metric codes, linear sets and their duality, Des. Codes Cryptogr., 88 (2020), 655-675.
doi: 10.1007/s10623-019-00703-z.
|
[33]
|
M. Shi and P. Solé, Three-weight codes, triple sum sets, and strongly walk regular graphs, Designs, Codes and Cryptogr., 87 (2019), 2395-2404.
doi: 10.1007/s10623-019-00628-7.
|
[34]
|
M. Tsfasman, S. Vlăduţ and D. Nogin, Algebraic Geometric Codes: Basic Notions, Mathematical Surveys and Monographs, American Mathematical Society, 2007.
doi: 10.1090/surv/139.
|
[35]
|
B. Wu and Z. Liu, Linearized polynomials over finite fields revisited, Finite Fields Appl., 22 (2013), 79-100.
doi: 10.1016/j.ffa.2013.03.003.
|
[36]
|
Y. Wu, Q. Yansheng and X. Shi, At most three-weight binary linear codes from generalized Moisio's exponential sums, Designs, Codes and Cryptogr., 87 (2019), 1927-1943.
doi: 10.1007/s10623-018-00595-5.
|
[37]
|
C. Zanella and F. Zullo, Vertex properties of maximum scattered linear sets of $\text{PG}(1, q^n)$, Discrete Math., 343 (2020), 111800, 14pp.
doi: 10.1016/j.disc.2019.111800.
|
[38]
|
G. Zini and F. Zullo, Scattered subspaces and related codes, arXiv: 2007.04643.
|