In this paper we study the kernel-based online gradient descent with least squares loss without an explicit regularization term. Our approach is novel by controlling the expectation of the K-norm of $ f_t $ using an iterative process. Then we use distributed learning to improve our result.
Citation: |
[1] |
X. Chen and Y. Lei, Refined Bounds for online pairwise learning algorithm, Neurocomputing, 275 (2018), 2656-2665.
doi: 10.1016/j.neucom.2017.11.049.![]() ![]() |
[2] |
F. Cucker and S. Smale, On the mathematical foundations of learning, Bull. Amer. Math. Soc., 39 (2001), 1-49.
doi: 10.1090/S0273-0979-01-00923-5.![]() ![]() ![]() |
[3] |
J. Duchi, E. Hazan and Y. Singer, Adaptive subgradient methods for online learning and stochastic optimization, Journal of Machine Learning Research, 12 (2011), 2121-2159.
![]() ![]() |
[4] |
T. Hu, Online regression with varying gaussians and non-identical distributions, Analysis and Applications, 9 (2011), 395-408.
doi: 10.1142/S0219530511001923.![]() ![]() ![]() |
[5] |
J. Kiefer and J. Wolfowitz, Stochastic estimation of the maximum of a regression function, Ann. Math. Statist., 23 (1952), 462-466.
doi: 10.1214/aoms/1177729392.![]() ![]() ![]() |
[6] |
S. B. Lin, X Guo and D. X. Zhou, Distributed learning with regularized least squares, Journal of Machine Learning Research, 18 (2017), Paper No. 92, 31 pp.
![]() ![]() |
[7] |
M. Pontil, Y. Ying and D. X. Zhou, Error analysis for online gradient descent algorithms in reproducing kernel Hilbert space, Technical Report, Department of Computer Science, University College London, (2005).
![]() |
[8] |
H. Robbins and S. Monro, A stochastic approximation method, Ann. Math. Statist., 22 (1951), 400-407.
doi: 10.1214/aoms/1177729586.![]() ![]() ![]() |
[9] |
S. Smale and Y. Yao, Online learning algorithms, Found. Comput. Math., 6 (2006), 145-170.
doi: 10.1007/s10208-004-0160-z.![]() ![]() ![]() |
[10] |
S. Smale and D. X. Zhou, Online learning with Markov sampling, Analysis and Applications, 7 (2009), 87-113.
doi: 10.1142/S0219530509001293.![]() ![]() ![]() |
[11] |
S. Vijayakumar, A. D'Souza and S. Schaal, Incremental online learning in high dimensions, Neural Computation, 17 (2005), 2602-2634.
doi: 10.1162/089976605774320557.![]() ![]() ![]() |
[12] |
C. Wang and T Hu, Online minimum error entropy algorithm with unbounded sampling, Analysis and Applications, 17 (2019), 293-322.
doi: 10.1142/S0219530518500148.![]() ![]() ![]() |
[13] |
J. Xu, Z. Zheng, Z. Fan and W. Liu, Online personalized QoS prediction approach for cloud services, 4th International Conference on Cloud Computing and Intelligence Systems, 2016.
doi: 10.1109/CCIS.2016.7790220.![]() ![]() |
[14] |
Y. Yao, L. Losasco and A. Caponnetto, Early stopping in gradient descent boosting, Constr. Approx., 26 (2007), 289-315.
doi: 10.1007/s00365-006-0663-2.![]() ![]() ![]() |
[15] |
Y. Ying and M. Pontil, Online pairwise learning algorithms, Found. Comput. Math., 28 (2016), 743-777.
doi: 10.1162/NECO_a_00817.![]() ![]() |
[16] |
Y. Ying and D. X. Zhou, Online regularized classification algorithm, IEEE, trans. Inform. Theory, 52 (2006), 4775-4788.
doi: 10.1109/TIT.2006.883632.![]() ![]() ![]() |
[17] |
Z. H. Zhou, N. V. Chawla, Y. Jin and G. J. Williams, Big data opportunities and challenges: Discussions from data analytics perspective, IEEE Computational Intelligence Magazine, 9 (2014), 62-74.
![]() |