Weibull Strength Analysis of Pineapple Leaf Fiber

Article Preview

Abstract:

Pineapple leave fiber (PALF) can be considered as one of the green materials to the industries, which is the potential to replace the non-renewable synthetic fiber. However, the high disparity in the mechanical properties of PALF becomes an issue in structural composite design. Hence, improved Weibull distribution is utilised to quantify the tensile strength variation of PALF in various gauge lengths. The single fiber tensile test was performed after the fiber surface treatment and fiber diameter scanning. The predicted PALF strength by applying the improved Weibull distribution incorporating with conical frustum model is well compromised with experimental data compared to the traditional Weibull model.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1030)

Pages:

45-52

Citation:

Online since:

May 2021

Export:

Price:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Citation:

1
0
0
0
Smart Citations
1
0
0
0
Citing PublicationsSupportingMentioningContrasting
View Citations

See how this article has been cited at scite.ai

scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

* - Corresponding Author

[1] D. Nabi Saheb, J.P. Jog, Natural fiber polymer composite: A review, Adv. Polym. Technol. 18 (1999) 351–363.

DOI: 10.1002/(sici)1098-2329(199924)18:4<351::aid-adv6>3.0.co;2-x

Google Scholar

[2] M. Asim, K. Abdan, M. Jawaid, M. Nasir, Z. Dashtizadeh, M.R. Ishak, M. Enamul Hoque, A review on pineapple leaves fibre and its composite, Int. J. Polym. Sci. 2015 (2015) 950567.

DOI: 10.1155/2015/950567

Google Scholar

[3] K. Senthilkumar, N. Saba, M. Chandrasekar, M. Jawaid, N. Rajini, O.Y. Alothman, S. Siengchin, Evaluation of mechanical and free vibration properties of the pineapple leaf fibre reinforced polyester composites, Constr. Build Mater. 195 (2019) 423–431.

DOI: 10.1016/j.conbuildmat.2018.11.081

Google Scholar

[4] R.M.N. Arib, S.M. Sapuan, M.M.H.M. Ahmad, M.T. Paridah, H.M.D.K. Zaman, Mechanical properties of pineapple leaf fibre reinforced polypropylene composites, Mater. Des. 27 (2006) 391– 396.

DOI: 10.1016/j.matdes.2004.11.009

Google Scholar

[5] S.K. Dey, G.K. Bhattacharyya, S.K. Bhattacharyya, Magic yarns from ramie and pineapple a new dimension in 21st century, Proceed. 20th Indian Eng, Congr. 69, Kolkata (2005).

Google Scholar

[6] R.M.N. Arib, S.M. Sapuan, M.M.H.M. Ahmad, M.T. Paridah, H.M.D.K. Zaman, A literature review of pineapple fibre reinforced polymer composites, Polym. Polym. Compos. 12 (2004) 341– 348.

DOI: 10.1177/096739110401200408

Google Scholar

[7] L.U. Devi, S.S. Bhagawan, S. Thomas, Dynamic mechanical properties of pineapple leaf fiber polyester composites, Polym. Compos. 32 (2011) 1741–1750.

DOI: 10.1002/pc.21197

Google Scholar

[8] L.U. Devi, S.S. Bhagawan, S. Thomas, Dynamic mechanical analysis of pineapple leaf/glass hybrid fiber reinforced polyester composites, Polym. Compos. 31 (2010) 956–965.

DOI: 10.1002/pc.20880

Google Scholar

[9] L.U. Devi, K. Joseph, K.C.M. Nair, S. Thomas, Ageing studies of pineapple leaf fiber- reinforced polyester composites," J. Appl. Polym. Sci. 94 (2004) 503–510.

DOI: 10.1002/app.20924

Google Scholar

[10] J. George, S.S. Bhagawan, S. Thomas, Effects of environment on the properties of low-density polyethylene composites reinforced with pineapple-leaf fibre, Compos Sci Technol. 58 (1998) 1471– 1485.

DOI: 10.1016/s0266-3538(97)00161-9

Google Scholar

[11] J. George, K. Joseph, S. Bhagawan, S. Thomas, Influence of short pineapple fiber on the viscoelastic properties of low-density polyethylene, Mater. Lett. 18 (1993) 163–170.

DOI: 10.1016/0167-577x(93)90119-i

Google Scholar

[12] C.V. Sia, L. Fernando, A. Joseph, S.N. Chua, Improved Weibull analysis on banana fiber strength prediction, J. Mech. Eng. Sci. 12 (2018) 3461–3471.

Google Scholar

[13] C.V. Sia, Y. Nakai, S. Shiozawa, H. Ohtani, Statistical analysis of the tensile strength of treated oil palm fiber by utilisation of Weibull distribution model, Open J. Compos. Mater. 04 (2014) 72–77.

DOI: 10.4236/ojcm.2014.41008

Google Scholar

[14] F.A. Silva, N. Chawla, R.D.T. Filho, Mechanical behavior of natural sisal fibers, J. Biobased Mater. Bioenergy 4 (2010) 106–113.

DOI: 10.1166/jbmb.2010.1074

Google Scholar

[15] A.B. Bevitori, I.L.A.D. Silva, F.P.D. Lopes, S.N. Monteiro, Diameter dependence of tensile strength by Weibull analysis: Part II jute fiber, Rev. Mater.15 (2010) 117–123.

DOI: 10.1590/s1517-70762010000200005

Google Scholar

[16] M. Guo, T.H. Zhang, B.W. Chen, L. Cheng, Tensile strength analysis of palm leaf sheath fiber with Weibull distribution, Compos. Part A Appl. Sci. Manuf. 62 (2014) 45–51.

DOI: 10.1016/j.compositesa.2014.03.018

Google Scholar

[17] A. Belaadi, S. Amroune, M. Bourchak, Effect of eco-friendly chemical sodium bicarbonate treatment on the mechanical properties of flax fibres: Weibull statistics, Int. J. Adv. Manuf. Technol. 106 (2020) 1753–1774.

DOI: 10.1007/s00170-019-04628-8

Google Scholar

[18] J.I. McCool, Using the Weibull Distribution: Reliability, Modeling and Inference, Wiley, New Jersey, (2012).

Google Scholar

[19] K.L. Pickering, G.W. Beckerman, S.N. Alam, N.J. Foreman, Optimising industrial hemp fibre for composites, Compos. Part A 38 (2007) 461–468.

DOI: 10.1016/j.compositesa.2006.02.020

Google Scholar

[20] D.M. Wilson, Statistical Tensile Strength of NextelTM 610 and NextelTM 720 Fibres, J. Mater. Sci. 32 (1997) 2535–2542.

Google Scholar

[21] J.A. Gutans, P.V. Tamuzh, Scale effect of the Weibull distribution of fibre strength, Mech. Comp. Mater. 6 (1984) 1107–1109.

Google Scholar

[22] A.S. Watson, R.L. Smith, An examination of statistical theories for fibrous materials in the light of experimental data, J. Mater. Sci. 20 (1985) 3260–3270.

DOI: 10.1007/bf00545193

Google Scholar

[23] S.L. Pheonix, P. Schwartz, H.H. Robinson IV, Statistics for the strength and lifetime in creep- rupture of model carbon/epoxy composites, Comp. Sci. Technol. 32 (1988) 81–120.

DOI: 10.1016/0266-3538(88)90001-2

Google Scholar

[24] H.F. Wu, A.N. Netravali, Weibull analysis of strength-length relationships in single Nicalon SiC fibres, J. Mater. Sci. 27 (1992) 3318–3324.

DOI: 10.1007/bf01116031

Google Scholar

[25] Y. Zhang, X. Wang, N. Pan, R. Postle, Weibull analysis of the tensile behavior of fibers with geometrical irregularities, J. Mater. Sci. 37 (2002) 1401–1406.

Google Scholar

[26] ASTM D1776-04, Standard practice for conditioning and testing textiles, ASTM International, (2004).

Google Scholar

[27] M. Asim, M. Jawaid, K. Abdan, M. Nasir, Effect of alkali treatments on physical and mechanical strength of pineapple leaf fibres, IOP Conf. Ser. Mater. Sci. Eng. 290 (2018) 012030.

DOI: 10.1088/1757-899x/290/1/012030

Google Scholar

[28] ASTM D3379-75, Standard test method for tensile strength and Young's modulus for high modulus single filament fibers, ASTM International, (1975).

Google Scholar

[29] G.H. Chae, B.A. Newcomb, P.V. Gulgunje, Y. Liu, K.K. Gupta, M.G. Kamath, K.M. Lyons, S. Ghoshal, C. Pramanik, L. Giannuzzi, K. Şahin, I. Chasiotis, S. Kumar, High strength and high modulus carbon fibers, Carbon 93 (2015) 81–87.

DOI: 10.1016/j.carbon.2015.05.016

Google Scholar

[30] J.L. Thomason, Glass fibre sizing: A review, Composites Part A: Appl. Sci. Manuf. 127 (2019) 105619.

Google Scholar

[31] A.G. Kulkarni, K.G. Satyanarayana, P.K. Rohatgi, Mechanical Behaviour of Coir Fibres under Tensile Load, J. Mater. Sci. 16 (1981) 905–914.

DOI: 10.1007/bf00542734

Google Scholar

  翻译: