[1]
D. Nabi Saheb, J.P. Jog, Natural fiber polymer composite: A review, Adv. Polym. Technol. 18 (1999) 351–363.
DOI: 10.1002/(sici)1098-2329(199924)18:4<351::aid-adv6>3.0.co;2-x
Google Scholar
[2]
M. Asim, K. Abdan, M. Jawaid, M. Nasir, Z. Dashtizadeh, M.R. Ishak, M. Enamul Hoque, A review on pineapple leaves fibre and its composite, Int. J. Polym. Sci. 2015 (2015) 950567.
DOI: 10.1155/2015/950567
Google Scholar
[3]
K. Senthilkumar, N. Saba, M. Chandrasekar, M. Jawaid, N. Rajini, O.Y. Alothman, S. Siengchin, Evaluation of mechanical and free vibration properties of the pineapple leaf fibre reinforced polyester composites, Constr. Build Mater. 195 (2019) 423–431.
DOI: 10.1016/j.conbuildmat.2018.11.081
Google Scholar
[4]
R.M.N. Arib, S.M. Sapuan, M.M.H.M. Ahmad, M.T. Paridah, H.M.D.K. Zaman, Mechanical properties of pineapple leaf fibre reinforced polypropylene composites, Mater. Des. 27 (2006) 391– 396.
DOI: 10.1016/j.matdes.2004.11.009
Google Scholar
[5]
S.K. Dey, G.K. Bhattacharyya, S.K. Bhattacharyya, Magic yarns from ramie and pineapple a new dimension in 21st century, Proceed. 20th Indian Eng, Congr. 69, Kolkata (2005).
Google Scholar
[6]
R.M.N. Arib, S.M. Sapuan, M.M.H.M. Ahmad, M.T. Paridah, H.M.D.K. Zaman, A literature review of pineapple fibre reinforced polymer composites, Polym. Polym. Compos. 12 (2004) 341– 348.
DOI: 10.1177/096739110401200408
Google Scholar
[7]
L.U. Devi, S.S. Bhagawan, S. Thomas, Dynamic mechanical properties of pineapple leaf fiber polyester composites, Polym. Compos. 32 (2011) 1741–1750.
DOI: 10.1002/pc.21197
Google Scholar
[8]
L.U. Devi, S.S. Bhagawan, S. Thomas, Dynamic mechanical analysis of pineapple leaf/glass hybrid fiber reinforced polyester composites, Polym. Compos. 31 (2010) 956–965.
DOI: 10.1002/pc.20880
Google Scholar
[9]
L.U. Devi, K. Joseph, K.C.M. Nair, S. Thomas, Ageing studies of pineapple leaf fiber- reinforced polyester composites," J. Appl. Polym. Sci. 94 (2004) 503–510.
DOI: 10.1002/app.20924
Google Scholar
[10]
J. George, S.S. Bhagawan, S. Thomas, Effects of environment on the properties of low-density polyethylene composites reinforced with pineapple-leaf fibre, Compos Sci Technol. 58 (1998) 1471– 1485.
DOI: 10.1016/s0266-3538(97)00161-9
Google Scholar
[11]
J. George, K. Joseph, S. Bhagawan, S. Thomas, Influence of short pineapple fiber on the viscoelastic properties of low-density polyethylene, Mater. Lett. 18 (1993) 163–170.
DOI: 10.1016/0167-577x(93)90119-i
Google Scholar
[12]
C.V. Sia, L. Fernando, A. Joseph, S.N. Chua, Improved Weibull analysis on banana fiber strength prediction, J. Mech. Eng. Sci. 12 (2018) 3461–3471.
Google Scholar
[13]
C.V. Sia, Y. Nakai, S. Shiozawa, H. Ohtani, Statistical analysis of the tensile strength of treated oil palm fiber by utilisation of Weibull distribution model, Open J. Compos. Mater. 04 (2014) 72–77.
DOI: 10.4236/ojcm.2014.41008
Google Scholar
[14]
F.A. Silva, N. Chawla, R.D.T. Filho, Mechanical behavior of natural sisal fibers, J. Biobased Mater. Bioenergy 4 (2010) 106–113.
DOI: 10.1166/jbmb.2010.1074
Google Scholar
[15]
A.B. Bevitori, I.L.A.D. Silva, F.P.D. Lopes, S.N. Monteiro, Diameter dependence of tensile strength by Weibull analysis: Part II jute fiber, Rev. Mater.15 (2010) 117–123.
DOI: 10.1590/s1517-70762010000200005
Google Scholar
[16]
M. Guo, T.H. Zhang, B.W. Chen, L. Cheng, Tensile strength analysis of palm leaf sheath fiber with Weibull distribution, Compos. Part A Appl. Sci. Manuf. 62 (2014) 45–51.
DOI: 10.1016/j.compositesa.2014.03.018
Google Scholar
[17]
A. Belaadi, S. Amroune, M. Bourchak, Effect of eco-friendly chemical sodium bicarbonate treatment on the mechanical properties of flax fibres: Weibull statistics, Int. J. Adv. Manuf. Technol. 106 (2020) 1753–1774.
DOI: 10.1007/s00170-019-04628-8
Google Scholar
[18]
J.I. McCool, Using the Weibull Distribution: Reliability, Modeling and Inference, Wiley, New Jersey, (2012).
Google Scholar
[19]
K.L. Pickering, G.W. Beckerman, S.N. Alam, N.J. Foreman, Optimising industrial hemp fibre for composites, Compos. Part A 38 (2007) 461–468.
DOI: 10.1016/j.compositesa.2006.02.020
Google Scholar
[20]
D.M. Wilson, Statistical Tensile Strength of NextelTM 610 and NextelTM 720 Fibres, J. Mater. Sci. 32 (1997) 2535–2542.
Google Scholar
[21]
J.A. Gutans, P.V. Tamuzh, Scale effect of the Weibull distribution of fibre strength, Mech. Comp. Mater. 6 (1984) 1107–1109.
Google Scholar
[22]
A.S. Watson, R.L. Smith, An examination of statistical theories for fibrous materials in the light of experimental data, J. Mater. Sci. 20 (1985) 3260–3270.
DOI: 10.1007/bf00545193
Google Scholar
[23]
S.L. Pheonix, P. Schwartz, H.H. Robinson IV, Statistics for the strength and lifetime in creep- rupture of model carbon/epoxy composites, Comp. Sci. Technol. 32 (1988) 81–120.
DOI: 10.1016/0266-3538(88)90001-2
Google Scholar
[24]
H.F. Wu, A.N. Netravali, Weibull analysis of strength-length relationships in single Nicalon SiC fibres, J. Mater. Sci. 27 (1992) 3318–3324.
DOI: 10.1007/bf01116031
Google Scholar
[25]
Y. Zhang, X. Wang, N. Pan, R. Postle, Weibull analysis of the tensile behavior of fibers with geometrical irregularities, J. Mater. Sci. 37 (2002) 1401–1406.
Google Scholar
[26]
ASTM D1776-04, Standard practice for conditioning and testing textiles, ASTM International, (2004).
Google Scholar
[27]
M. Asim, M. Jawaid, K. Abdan, M. Nasir, Effect of alkali treatments on physical and mechanical strength of pineapple leaf fibres, IOP Conf. Ser. Mater. Sci. Eng. 290 (2018) 012030.
DOI: 10.1088/1757-899x/290/1/012030
Google Scholar
[28]
ASTM D3379-75, Standard test method for tensile strength and Young's modulus for high modulus single filament fibers, ASTM International, (1975).
Google Scholar
[29]
G.H. Chae, B.A. Newcomb, P.V. Gulgunje, Y. Liu, K.K. Gupta, M.G. Kamath, K.M. Lyons, S. Ghoshal, C. Pramanik, L. Giannuzzi, K. Şahin, I. Chasiotis, S. Kumar, High strength and high modulus carbon fibers, Carbon 93 (2015) 81–87.
DOI: 10.1016/j.carbon.2015.05.016
Google Scholar
[30]
J.L. Thomason, Glass fibre sizing: A review, Composites Part A: Appl. Sci. Manuf. 127 (2019) 105619.
Google Scholar
[31]
A.G. Kulkarni, K.G. Satyanarayana, P.K. Rohatgi, Mechanical Behaviour of Coir Fibres under Tensile Load, J. Mater. Sci. 16 (1981) 905–914.
DOI: 10.1007/bf00542734
Google Scholar