Computer Science > Logic in Computer Science
[Submitted on 5 Aug 2022]
Title:On Model Reconciliation: How to Reconcile When Robot Does not Know Human's Model?
View PDFAbstract:The Model Reconciliation Problem (MRP) was introduced to address issues in explainable AI planning. A solution to a MRP is an explanation for the differences between the models of the human and the planning agent (robot). Most approaches to solving MRPs assume that the robot, who needs to provide explanations, knows the human model. This assumption is not always realistic in several situations (e.g., the human might decide to update her model and the robot is unaware of the updates).
In this paper, we propose a dialog-based approach for computing explanations of MRPs under the assumptions that (i) the robot does not know the human model; (ii) the human and the robot share the set of predicates of the planning domain and their exchanges are about action descriptions and fluents' values; (iii) communication between the parties is perfect; and (iv) the parties are truthful. A solution of a MRP is computed through a dialog, defined as a sequence of rounds of exchanges, between the robot and the human. In each round, the robot sends a potential explanation, called proposal, to the human who replies with her evaluation of the proposal, called response. We develop algorithms for computing proposals by the robot and responses by the human and implement these algorithms in a system that combines imperative means with answer set programming using the multi-shot feature of clingo.
Submission history
From: EPTCS [view email] [via EPTCS proxy][v1] Fri, 5 Aug 2022 10:48:42 UTC (60 KB)
Current browse context:
cs.LO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.