Computer Science > Formal Languages and Automata Theory
[Submitted on 9 Oct 2012]
Title:Deciding KAT and Hoare Logic with Derivatives
View PDFAbstract:Kleene algebra with tests (KAT) is an equational system for program verification, which is the combination of Boolean algebra (BA) and Kleene algebra (KA), the algebra of regular expressions. In particular, KAT subsumes the propositional fragment of Hoare logic (PHL) which is a formal system for the specification and verification of programs, and that is currently the base of most tools for checking program correctness. Both the equational theory of KAT and the encoding of PHL in KAT are known to be decidable. In this paper we present a new decision procedure for the equivalence of two KAT expressions based on the notion of partial derivatives. We also introduce the notion of derivative modulo particular sets of equations. With this we extend the previous procedure for deciding PHL. Some experimental results are also presented.
Submission history
From: EPTCS [view email] [via EPTCS proxy][v1] Tue, 9 Oct 2012 00:54:12 UTC (24 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.