Statistics > Methodology
[Submitted on 20 Jul 2017 (v1), last revised 6 Jan 2019 (this version, v3)]
Title:The Graphical Horseshoe Estimator for Inverse Covariance Matrices
View PDFAbstract:We develop a new estimator of the inverse covariance matrix for high-dimensional multivariate normal data using the horseshoe prior. The proposed graphical horseshoe estimator has attractive properties compared to other popular estimators, such as the graphical lasso and graphical Smoothly Clipped Absolute Deviation (SCAD). The most prominent benefit is that when the true inverse covariance matrix is sparse, the graphical horseshoe provides estimates with small information divergence from the true sampling distribution. The posterior mean under the graphical horseshoe prior can also be almost unbiased under certain conditions. In addition to these theoretical results, we also provide a full Gibbs sampler for implementing our estimator. MATLAB code is available for download from github at this http URL. The graphical horseshoe estimator compares favorably to existing techniques in simulations and in a human gene network data analysis.
Submission history
From: Yunfan Li [view email][v1] Thu, 20 Jul 2017 18:03:42 UTC (170 KB)
[v2] Wed, 9 May 2018 22:12:37 UTC (1,327 KB)
[v3] Sun, 6 Jan 2019 19:15:56 UTC (1,420 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.