Mathematics > Algebraic Geometry
[Submitted on 12 Feb 2022]
Title:Trinomials and Deterministic Complexity Limits for Real Solving
View PDFAbstract:Consider a univariate polynomial f in Z[x] with degree d, exactly t monomial terms, and coefficients in {-H,...,H}. Solving f over the reals, R, in polynomial-time can be defined as counting the exact number of real roots of f and then finding (for each such root z) an approximation w of logarithmic height (log(dH))^{O(1)} such that the Newton iterates of w have error decaying at a rate of O((1/2)^{2^i}). Solving efficiently in this sense, using (log(dH))^{O(1)} deterministic bit operations, is arguably the most honest formulation of solving a polynomial equation over R in time polynomial in the input size. Unfortunately, deterministic algorithms this fast are known only for t=2, unknown for t=3, and provably impossible for t=4. (One can of course resort to older techniques with complexity (d\log H)^{O(1)} for t>=4.)
We give evidence that polynomial-time real-solving in the strong sense above is possible for t=3: We give a polynomial-time algorithm employing A-hypergeometric series that works for all but a fraction of 1/Omega(log(dH)) of the input f. We also show an equivalence between fast trinomial solving and sign evaluation at rational points of small height. As a consequence, we show that for "most" trinomials f, we can compute the sign of f at a rational point r in time polynomial in log(dH) and the logarithmic height of r. (This was known only for binomials before.) We also mention a related family of polynomial systems that should admit a similar speed-up for solving.
Current browse context:
math.AG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.