Electrical Engineering and Systems Science > Systems and Control
[Submitted on 6 Apr 2022]
Title:Fault Diagnosis of Discrete-Event Systems under Non-Deterministic Observations with Output Fairness
View PDFAbstract:In this paper, we revisit the fault diagnosis problem of discrete-event systems (DES) under non-deterministic observations. Non-deterministic observation is a general observation model that includes the case of intermittent loss of observations. In this setting, upon the occurrence of an event, the sensor reading may be non-deterministic such that a set of output symbols are all possible. Existing works on fault diagnosis under non-deterministic observations require to consider all possible observation realizations. However, this approach includes the case where some possible outputs are permanently disabled. In this work, we introduce the concept of output fairness by requiring that, for any output symbols, if it has infinite chances to be generated, then it will indeed be generated infinite number of times. We use an assume-guarantee type of linear temporal logic formulas to formally describe this assumption. A new notion called output-fair diagnosability (OF-diagnosability) is proposed. An effective approach is provided for the verification of OF-diagnosability. We show that the proposed notion of OF-diagnosability is weaker than the standard definition of diagnosability under non-deterministic observations, and it better captures the physical scenario of observation non-determinism or intermittent loss of observations.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.