Computer Science > Computers and Society
[Submitted on 12 Apr 2022]
Title:Robust Quantification of Gender Disparity in Pre-Modern English Literature using Natural Language Processing
View PDFAbstract:Research has continued to shed light on the extent and significance of gender disparity in social, cultural and economic spheres. More recently, computational tools from the Natural Language Processing (NLP) literature have been proposed for measuring such disparity using relatively extensive datasets and empirically rigorous methodologies. In this paper, we contribute to this line of research by studying gender disparity, at scale, in copyright-expired literary texts published in the pre-modern period (defined in this work as the period ranging from the mid-nineteenth through the mid-twentieth century). One of the challenges in using such tools is to ensure quality control, and by extension, trustworthy statistical analysis. Another challenge is in using materials and methods that are publicly available and have been established for some time, both to ensure that they can be used and vetted in the future, and also, to add confidence to the methodology itself. We present our solution to addressing these challenges, and using multiple measures, demonstrate the significant discrepancy between the prevalence of female characters and male characters in pre-modern literature. The evidence suggests that the discrepancy declines when the author is female. The discrepancy seems to be relatively stable as we plot data over the decades in this century-long period. Finally, we aim to carefully describe both the limitations and ethical caveats associated with this study, and others like it.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.