Computer Science > Computational Complexity
[Submitted on 12 Apr 2022 (v1), last revised 7 Feb 2023 (this version, v2)]
Title:Energy Complexity of Regular Languages
View PDFAbstract:Each step that results in a bit of information being ``forgotten'' by a computing device has an intrinsic energy cost. Although any Turing machine can be rewritten to be thermodynamically reversible without changing the recognized language, finite automata that are restricted to scan their input once in ``real-time'' fashion can only recognize the members of a proper subset of the class of regular languages in this reversible manner. We study the energy expenditure associated with the computations of deterministic and quantum finite automata. We prove that zero-error quantum finite automata have no advantage over their classical deterministic counterparts in terms of the maximum obligatory thermodynamic cost associated by any step during the recognition of different regular languages. We also demonstrate languages for which ``error can be traded for energy'', i.e. whose zero-error recognition is associated with computation steps having provably bigger obligatory energy cost when compared to their bounded-error recognition by real-time finite-memory quantum devices. We show that regular languages can be classified according to the intrinsic energy requirements on the recognizing automaton as a function of input length, and prove upper and lower bounds.
Submission history
From: A. C. Cem Say [view email][v1] Tue, 12 Apr 2022 18:21:46 UTC (9,777 KB)
[v2] Tue, 7 Feb 2023 12:36:50 UTC (3,773 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.