Computer Science > Human-Computer Interaction
[Submitted on 27 May 2022 (v1), last revised 31 May 2022 (this version, v2)]
Title:Sensing Eating Events in Context: A Smartphone-Only Approach
View PDFAbstract:While the task of automatically detecting eating events has been examined in prior work using various wearable devices, the use of smartphones as standalone devices to infer eating events remains an open issue. This paper proposes a framework that infers eating vs. non-eating events from passive smartphone sensing and evaluates it on a dataset of 58 college students. First, we show that time of the day and features from modalities such as screen usage, accelerometer, app usage, and location are indicative of eating and non-eating events. Then, we show that eating events can be inferred with an AUROC (area under the receiver operating characteristics curve) of 0.65 using subject-independent machine learning models, which can be further improved up to 0.81 for subject-dependent and 0.81 for hybrid models using personalization techniques. Moreover, we show that users have different behavioral and contextual routines around eating episodes requiring specific feature groups to train fully personalized models. These findings are of potential value for future mobile food diary apps that are context-aware by enabling scalable sensing-based eating studies using only smartphones; detecting under-reported eating events, thus increasing data quality in self report-based studies; providing functionality to track food consumption and generate reminders for on-time collection of food diaries; and supporting mobile interventions towards healthy eating practices.
Submission history
From: Lakmal Meegahapola [view email][v1] Fri, 27 May 2022 18:42:23 UTC (7,544 KB)
[v2] Tue, 31 May 2022 09:49:33 UTC (7,536 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.