Mathematics > Optimization and Control
[Submitted on 13 Jun 2022]
Title:Value Function Based Difference-of-Convex Algorithm for Bilevel Hyperparameter Selection Problems
View PDFAbstract:Gradient-based optimization methods for hyperparameter tuning guarantee theoretical convergence to stationary solutions when for fixed upper-level variable values, the lower level of the bilevel program is strongly convex (LLSC) and smooth (LLS). This condition is not satisfied for bilevel programs arising from tuning hyperparameters in many machine learning algorithms. In this work, we develop a sequentially convergent Value Function based Difference-of-Convex Algorithm with inexactness (VF-iDCA). We show that this algorithm achieves stationary solutions without LLSC and LLS assumptions for bilevel programs from a broad class of hyperparameter tuning applications. Our extensive experiments confirm our theoretical findings and show that the proposed VF-iDCA yields superior performance when applied to tune hyperparameters.
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.