Computer Science > Computer Vision and Pattern Recognition
[Submitted on 25 Aug 2022]
Title:Video Mobile-Former: Video Recognition with Efficient Global Spatial-temporal Modeling
View PDFAbstract:Transformer-based models have achieved top performance on major video recognition benchmarks. Benefiting from the self-attention mechanism, these models show stronger ability of modeling long-range dependencies compared to CNN-based models. However, significant computation overheads, resulted from the quadratic complexity of self-attention on top of a tremendous number of tokens, limit the use of existing video transformers in applications with limited resources like mobile devices. In this paper, we extend Mobile-Former to Video Mobile-Former, which decouples the video architecture into a lightweight 3D-CNNs for local context modeling and a Transformer modules for global interaction modeling in a parallel fashion. To avoid significant computational cost incurred by computing self-attention between the large number of local patches in videos, we propose to use very few global tokens (e.g., 6) for a whole video in Transformers to exchange information with 3D-CNNs with a cross-attention mechanism. Through efficient global spatial-temporal modeling, Video Mobile-Former significantly improves the video recognition performance of alternative lightweight baselines, and outperforms other efficient CNN-based models at the low FLOP regime from 500M to 6G total FLOPs on various video recognition tasks. It is worth noting that Video Mobile-Former is the first Transformer-based video model which constrains the computational budget within 1G FLOPs.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.