Mathematics > Numerical Analysis
[Submitted on 17 Sep 2022]
Title:Comparison of two aspects of a PDE model for biological network formation
View PDFAbstract:We compare the solutions of two systems of partial differential equations (PDE), seen as two different interpretations of the same model that describes formation of complex biological networks. Both approaches take into account the time evolution of the medium flowing through the network, and we compute the solution of an elliptic-parabolic PDE system for the conductivity vector $m$, the conductivity tensor $\mathbb{C}$ and the pressure $p$. We use finite differences schemes in a uniform Cartesian grid in the spatially two-dimensional setting to solve the two systems, where the parabolic equation is solved by a semi-implicit scheme in time. Since the conductivity vector and tensor appear also in the Poisson equation for the pressure $p$, the elliptic equation depends implicitly on time. For this reason we compute the solution of three linear systems in the case of the conductivity vector $m\in\mathbb{R}^2$, and four linear systems in the case of the symmetric conductivity tensor $\mathbb{C}\in\mathbb{R}^{2\times 2}$, at each time step. To accelerate the simulations, we make use of the Alternating Direction Implicit (ADI) method. The role of the parameters is important for obtaining detailed solutions. We provide numerous tests with various values of the parameters involved, to see the differences in the solutions of the two systems.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.