Computer Science > Information Theory
[Submitted on 19 Sep 2022]
Title:On Relaxed Locally Decodable Codes for Hamming and Insertion-Deletion Errors
View PDFAbstract:Locally Decodable Codes (LDCs) are error-correcting codes $C:\Sigma^n\rightarrow \Sigma^m$ with super-fast decoding algorithms. They are important mathematical objects in many areas of theoretical computer science, yet the best constructions so far have codeword length $m$ that is super-polynomial in $n$, for codes with constant query complexity and constant alphabet size. In a very surprising result, Ben-Sasson et al. showed how to construct a relaxed version of LDCs (RLDCs) with constant query complexity and almost linear codeword length over the binary alphabet, and used them to obtain significantly-improved constructions of Probabilistically Checkable Proofs. In this work, we study RLDCs in the standard Hamming-error setting, and introduce their variants in the insertion and deletion (Insdel) error setting. Insdel LDCs were first studied by Ostrovsky and Paskin-Cherniavsky, and are further motivated by recent advances in DNA random access bio-technologies, in which the goal is to retrieve individual files from a DNA storage database. Our first result is an exponential lower bound on the length of Hamming RLDCs making 2 queries, over the binary alphabet. This answers a question explicitly raised by Gur and Lachish. Our result exhibits a "phase-transition"-type behavior on the codeword length for constant-query Hamming RLDCs. We further define two variants of RLDCs in the Insdel-error setting, a weak and a strong version. On the one hand, we construct weak Insdel RLDCs with with parameters matching those of the Hamming variants. On the other hand, we prove exponential lower bounds for strong Insdel RLDCs. These results demonstrate that, while these variants are equivalent in the Hamming setting, they are significantly different in the insdel setting. Our results also prove a strict separation between Hamming RLDCs and Insdel RLDCs.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.