Computer Science > Discrete Mathematics
[Submitted on 5 Oct 2022]
Title:A flow-based formulation for parallel machine scheduling using decision diagrams
View PDFAbstract:We present a new flow-based formulation for identical parallel machine scheduling with a regular objective function and without idle time. The formulation is constructed with the help of a decision diagram that represents all job sequences that respect specific ordering rules. These rules rely on a partition of the planning horizon into, generally non-uniform, periods and do not exclude all optimal solutions, but they constrain solutions to adhere to a canonical form. The new formulation has numerous variables and constraints, and hence we apply a Dantzig-Wolfe decomposition in order to compute the linear programming relaxation in reasonable time; the resulting lower bound is stronger than the bound from the classical time-indexed formulation. We develop a branch-and-price framework that solves several instances from the literature for the first time. We compare the new formulation with the time-indexed and arc-time-indexed formulation by means of a series of computational experiments.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.