Computer Science > Computer Vision and Pattern Recognition
[Submitted on 19 Nov 2022]
Title:Concept-based Explanations using Non-negative Concept Activation Vectors and Decision Tree for CNN Models
View PDFAbstract:This paper evaluates whether training a decision tree based on concepts extracted from a concept-based explainer can increase interpretability for Convolutional Neural Networks (CNNs) models and boost the fidelity and performance of the used explainer. CNNs for computer vision have shown exceptional performance in critical industries. However, it is a significant barrier when deploying CNNs due to their complexity and lack of interpretability. Recent studies to explain computer vision models have shifted from extracting low-level features (pixel-based explanations) to mid-or high-level features (concept-based explanations). The current research direction tends to use extracted features in developing approximation algorithms such as linear or decision tree models to interpret an original model. In this work, we modify one of the state-of-the-art concept-based explanations and propose an alternative framework named TreeICE. We design a systematic evaluation based on the requirements of fidelity (approximate models to original model's labels), performance (approximate models to ground-truth labels), and interpretability (meaningful of approximate models to humans). We conduct computational evaluation (for fidelity and performance) and human subject experiments (for interpretability) We find that Tree-ICE outperforms the baseline in interpretability and generates more human readable explanations in the form of a semantic tree structure. This work features how important to have more understandable explanations when interpretability is crucial.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.