Computer Science > Computer Vision and Pattern Recognition
[Submitted on 8 Dec 2022 (v1), last revised 6 Mar 2023 (this version, v2)]
Title:Masked Video Distillation: Rethinking Masked Feature Modeling for Self-supervised Video Representation Learning
View PDFAbstract:Benefiting from masked visual modeling, self-supervised video representation learning has achieved remarkable progress. However, existing methods focus on learning representations from scratch through reconstructing low-level features like raw pixel RGB values. In this paper, we propose masked video distillation (MVD), a simple yet effective two-stage masked feature modeling framework for video representation learning: firstly we pretrain an image (or video) model by recovering low-level features of masked patches, then we use the resulting features as targets for masked feature modeling. For the choice of teacher models, we observe that students taught by video teachers perform better on temporally-heavy video tasks, while image teachers transfer stronger spatial representations for spatially-heavy video tasks. Visualization analysis also indicates different teachers produce different learned patterns for students. Motivated by this observation, we design a spatial-temporal co-teaching method for MVD. Specifically, we distill student models from both video teachers and image teachers by masked feature modeling. Extensive experimental results demonstrate that video transformers pretrained with spatial-temporal co-teaching outperform models distilled with a single teacher on a multitude of video datasets. Our MVD with vanilla ViT achieves state-of-the-art performance compared with previous supervised or self-supervised methods on several challenging video downstream tasks. For example, with the ViT-Large model, our MVD achieves 86.4% and 76.7% Top-1 accuracy on Kinetics-400 and Something-Something-v2, outperforming VideoMAE by 1.2% and 2.4% respectively. When a larger ViT-Huge model is adopted, MVD achieves the state-of-the-art performance with 77.3% Top-1 accuracy on Something-Something-v2 and 41.1 mAP on AVA v2.2. Code will be available at \url{this https URL}.
Submission history
From: Dongdong Chen [view email][v1] Thu, 8 Dec 2022 18:59:59 UTC (1,606 KB)
[v2] Mon, 6 Mar 2023 19:44:59 UTC (1,621 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.