Computer Science > Cryptography and Security
[Submitted on 21 Dec 2022]
Title:A Comparative Risk Analysis on CyberShip System with STPA-Sec, STRIDE and CORAS
View PDFAbstract:The widespread use of software-intensive cyber systems in critical infrastructures such as ships (CyberShips) has brought huge benefits, yet it has also opened new avenues for cyber attacks to potentially disrupt operations. Cyber risk assessment plays a vital role in identifying cyber threats and vulnerabilities that can be exploited to compromise cyber systems. A number of methodologies have been proposed to carry out these analyses. This paper evaluates and compares the application of three risk assessment methodologies: system theoretic process analysis (STPA-Sec), STRIDE and CORAS for identifying threats and vulnerabilities in a CyberShip system. We specifically selected these three methodologies because they identify threats not only at the component level, but also threats or hazards caused due to the interaction between components, resulting in sets of threats identified with each methodology and relevant differences. Moreover, STPA-Sec which is a variant of the STPA is widely used for safety and security analysis of cyber physical systems (CPS); CORAS offers a framework to perform cyber risk assessment in a top-down approach that aligns with STPA-Sec; and STRIDE (Spoofing, Tampering, Repudiation, Information disclosure, Denial of Service, Elevation of Privilege) considers threat at the component level as well as during the interaction that is similar to STPA-Sec. As a result of this analysis, this paper highlights the pros and cons of these methodologies, illustrates areas of special applicability, and suggests that their complementary use as threats identified through STRIDE can be used as an input to CORAS and STPA-Sec to make these methods more structured.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.