Computer Science > Hardware Architecture
[Submitted on 2 Jan 2023]
Title:Hardware Abstractions and Hardware Mechanisms to Support Multi-Task Execution on Coarse-Grained Reconfigurable Arrays
View PDFAbstract:Domain-specific accelerators are used in various computing systems ranging from edge devices to data centers. Coarse-grained reconfigurable arrays (CGRAs) represent an architectural midpoint between the flexibility of an FPGA and the efficiency of an ASIC and are a promising candidate for servicing multi-tasked workloads within an application domain. Unfortunately, scheduling multiple tasks onto a CGRA is challenging. CGRAs lack abstractions that capture hardware resources, leaving workload schedulers unable to reason about performance, energy, and utilization for different schedules. This work first proposes a CGRA architecture that can flexibly partition key resources, including the global buffer memory capacity, the global buffer memory bandwidth, and the compute resources. Partitioned resources serve as hardware abstractions that decouple compilation and resource allocation. The compiler uses these abstractions for coarse-grained resource mapping, and the scheduler uses them for flexible resource allocation at run time. We then propose two hardware mechanisms to support multi-task execution. A flexible-shape execution region increases the overall resource utilization by mapping multiple tasks with different resource requirements. Dynamic partial reconfiguration (DPR) enables a CGRA to update the hardware configuration as the scheduler makes decisions rapidly. We show that our abstraction can help automatic and efficient scheduling of multi-tasked workloads onto our target CGRA with high utilization, resulting in 1.05x-1.24x higher throughput and a 23-28% lower latency in a multi-tasked cloud workload and 60.8% reduced latency in an autonomous system workload when compared to a baseline CGRA running single tasks at a time.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.