Computer Science > Machine Learning
[Submitted on 31 Dec 2022 (v1), last revised 19 Mar 2023 (this version, v3)]
Title:Pseudo-Inverted Bottleneck Convolution for DARTS Search Space
View PDFAbstract:Differentiable Architecture Search (DARTS) has attracted considerable attention as a gradient-based neural architecture search method. Since the introduction of DARTS, there has been little work done on adapting the action space based on state-of-art architecture design principles for CNNs. In this work, we aim to address this gap by incrementally augmenting the DARTS search space with micro-design changes inspired by ConvNeXt and studying the trade-off between accuracy, evaluation layer count, and computational cost. We introduce the Pseudo-Inverted Bottleneck Conv (PIBConv) block intending to reduce the computational footprint of the inverted bottleneck block proposed in ConvNeXt. Our proposed architecture is much less sensitive to evaluation layer count and outperforms a DARTS network with similar size significantly, at layer counts as small as 2. Furthermore, with less layers, not only does it achieve higher accuracy with lower computational footprint (measured in GMACs) and parameter count, GradCAM comparisons show that our network can better detect distinctive features of target objects compared to DARTS. Code is available from this https URL.
Submission history
From: Yue Fei [view email][v1] Sat, 31 Dec 2022 22:56:04 UTC (1,882 KB)
[v2] Tue, 14 Mar 2023 14:53:27 UTC (1,832 KB)
[v3] Sun, 19 Mar 2023 00:49:26 UTC (914 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.