Computer Science > Computational Engineering, Finance, and Science
[Submitted on 24 Jan 2023 (v1), last revised 25 Jan 2023 (this version, v2)]
Title:Solving the Discretised Boltzmann Transport Equations using Neural Networks: Applications in Neutron Transport
View PDFAbstract:In this paper we solve the Boltzmann transport equation using AI libraries. The reason why this is attractive is because it enables one to use the highly optimised software within AI libraries, enabling one to run on different computer architectures and enables one to tap into the vast quantity of community based software that has been developed for AI and ML applications e.g. mixed arithmetic precision or model parallelism. Here we take the first steps towards developing this approach for the Boltzmann transport equation and develop the necessary methods in order to do that effectively. This includes: 1) A space-angle multigrid solution method that can extract the level of parallelism necessary to run efficiently on GPUs or new AI computers. 2) A new Convolutional Finite Element Method (ConvFEM) that greatly simplifies the implementation of high order finite elements (quadratic to quintic, say). 3) A new non-linear Petrov-Galerkin method that introduces dissipation anisotropically.
Submission history
From: Toby Phillips [view email][v1] Tue, 24 Jan 2023 13:37:50 UTC (4,693 KB)
[v2] Wed, 25 Jan 2023 10:59:21 UTC (4,693 KB)
Current browse context:
cs.CE
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.