Mathematics > Numerical Analysis
[Submitted on 30 Jan 2023 (v1), last revised 7 Jul 2023 (this version, v2)]
Title:Asymmetry and condition number of an elliptic-parabolic system for biological network formation
View PDFAbstract:We present results of numerical simulations of the tensor-valued elliptic-parabolic PDE model for biological network formation. The numerical method is based on a non-linear finite difference scheme on a uniform Cartesian grid in a 2D domain. The focus is on the impact of different discretization methods and choices of regularization parameters on the symmetry of the numerical solution. In particular, we show that using the symmetric alternating-direction implicit (ADI) method for time discretization helps preserve the symmetry of the solution, compared to the (non symmetric) ADI method. Moreover, we study the effect of regularization by isotropic background permeability $r>0$, showing that increased condition number of the elliptic problem due to decreasing value of $r$ leads to loss of symmetry. We show that in this case, neither the use of the symmetric ADI method preserves the symmetry of the solution. Finally, we perform numerical error analysis of our method making use of Wasserstein distance.
Submission history
From: Clarissa Astuto [view email][v1] Mon, 30 Jan 2023 14:27:08 UTC (2,130 KB)
[v2] Fri, 7 Jul 2023 14:58:28 UTC (2,470 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.