Computer Science > Artificial Intelligence
[Submitted on 4 Mar 2023]
Title:Conflict-driven Structural Learning Towards Higher Coverage Rate in ATPG
View PDFAbstract:Due to the increasing challenges posed by the relentless rise in the design complexity of integrated circuits, Boolean Satisfiability (SAT) has emerged as a robust alternative to structural APTG techniques. However, the high cost of transforming a circuit testing problem to a Conjunctive Normal Form (CNF) limits the application of SAT in industrial ATPG scenarios, resulting in a loss of test coverage. In Order to address this problem, this paper proposes a conflict-driven structural learning (CDSL) ATPG algorithm firstly, in which the conflict-driven heuristic methods in modern SAT solver are implemented on the logic cone of fault propagation and activation directly. The proposed CDSL algorithm is composed of three parts: (1) According to the implication graph, various conflict constraints have been learned to prune search space. (2) Conflict-driven implication and justification have been applied to increase decision accuracy and solving efficiency. (3) A conflict-based diagnosis method is further proposed in the case of low coverage debug, leading to making the aborted faults testable by relaxing or modifying some constraints on primary inputs. Extensive experimental results on industrial circuits demonstrate the effectiveness and efficiency of the proposed CDSL algorithm. It is shown that compared with the SAT-based ATPG, the proposed CDSL can on average decrease $25.6\%$ aborted faults with $94.51\%$ less run time. With a two-stage computational flow, it has shown that the proposed CDSL can lead to $46.37\%$ less aborted faults than a one-stage structural algorithm, further with the $3.19\%$ improvement on fault coverage. In addition, the conflict diagnosis can lead to $8.89\%$ less aborted faults on average, and $0.271\%$ improvement in fault coverage rate.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.