Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 4 Apr 2023]
Title:A Practical Framework for Unsupervised Structure Preservation Medical Image Enhancement
View PDFAbstract:Medical images are extremely valuable for supporting medical diagnoses. However, in practice, low-quality (LQ) medical images, such as images that are hazy/blurry, have uneven illumination, or are out of focus, among others, are often obtained during data acquisition. This leads to difficulties in the screening and diagnosis of medical diseases. Several generative adversarial networks (GAN)-based image enhancement methods have been proposed and have shown promising results. However, there is a quality-originality trade-off among these methods in the sense that they produce visually pleasing results but lose the ability to preserve originality, especially the structural inputs. Moreover, to our knowledge, there is no objective metric in evaluating the structure preservation of medical image enhancement methods in unsupervised settings due to the unavailability of paired ground-truth data. In this study, we propose a framework for practical unsupervised medical image enhancement that includes (1) a non-reference objective evaluation of structure preservation for medical image enhancement tasks called Laplacian structural similarity index measure (LaSSIM), which is based on SSIM and the Laplacian pyramid, and (2) a novel unsupervised GAN-based method called Laplacian medical image enhancement (LaMEGAN) to support the improvement of both originality and quality from LQ images. The LaSSIM metric does not require clean reference images and has been shown to be superior to SSIM in capturing image structural changes under image degradations, such as strong blurring on different datasets. The experiments demonstrated that our LaMEGAN achieves a satisfactory balance between quality and originality, with robust structure preservation performance while generating compelling visual results with very high image quality scores. The code will be made available at this https URL.
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.