Computer Science > Computer Vision and Pattern Recognition
[Submitted on 15 May 2023]
Title:Five A$^{+}$ Network: You Only Need 9K Parameters for Underwater Image Enhancement
View PDFAbstract:A lightweight underwater image enhancement network is of great significance for resource-constrained platforms, but balancing model size, computational efficiency, and enhancement performance has proven difficult for previous approaches. In this work, we propose the Five A$^{+}$ Network (FA$^{+}$Net), a highly efficient and lightweight real-time underwater image enhancement network with only $\sim$ 9k parameters and $\sim$ 0.01s processing time. The FA$^{+}$Net employs a two-stage enhancement structure. The strong prior stage aims to decompose challenging underwater degradations into sub-problems, while the fine-grained stage incorporates multi-branch color enhancement module and pixel attention module to amplify the network's perception of details. To the best of our knowledge, FA$^{+}$Net is the only network with the capability of real-time enhancement of 1080P images. Thorough extensive experiments and comprehensive visual comparison, we show that FA$^{+}$Net outperforms previous approaches by obtaining state-of-the-art performance on multiple datasets while significantly reducing both parameter count and computational complexity. The code is open source at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.