Computer Science > Computation and Language
[Submitted on 30 May 2023]
Title:Explaining Hate Speech Classification with Model Agnostic Methods
View PDFAbstract:There have been remarkable breakthroughs in Machine Learning and Artificial Intelligence, notably in the areas of Natural Language Processing and Deep Learning. Additionally, hate speech detection in dialogues has been gaining popularity among Natural Language Processing researchers with the increased use of social media. However, as evidenced by the recent trends, the need for the dimensions of explainability and interpretability in AI models has been deeply realised. Taking note of the factors above, the research goal of this paper is to bridge the gap between hate speech prediction and the explanations generated by the system to support its decision. This has been achieved by first predicting the classification of a text and then providing a posthoc, model agnostic and surrogate interpretability approach for explainability and to prevent model bias. The bidirectional transformer model BERT has been used for prediction because of its state of the art efficiency over other Machine Learning models. The model agnostic algorithm LIME generates explanations for the output of a trained classifier and predicts the features that influence the model decision. The predictions generated from the model were evaluated manually, and after thorough evaluation, we observed that the model performs efficiently in predicting and explaining its prediction. Lastly, we suggest further directions for the expansion of the provided research work.
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.