Mathematics > Logic
[Submitted on 2 Jun 2023 (v1), last revised 11 Aug 2023 (this version, v3)]
Title:Coding information into all infinite subsets of a dense set
View PDFAbstract:Suppose you have an uncomputable set $X$ and you want to find a set $A$, all of whose infinite subsets compute $X$. There are several ways to do this, but all of them seem to produce a set $A$ which is fairly sparse. We show that this is necessary in the following technical sense: if $X$ is uncomputable and $A$ is a set of positive lower density then $A$ has an infinite subset which does not compute $X$. We also prove an analogous result for PA degree: if $X$ is uncomputable and $A$ is a set of positive lower density then $A$ has an infinite subset which is not of PA degree. We will show that these theorems are sharp in certain senses and also prove a quantitative version formulated in terms of Kolmogorov complexity. Our results use a modified version of Mathias forcing and build on work by Seetapun, Liu, and others on the reverse math of Ramsey's theorem for pairs.
Submission history
From: Patrick Lutz [view email][v1] Fri, 2 Jun 2023 01:29:39 UTC (29 KB)
[v2] Tue, 25 Jul 2023 17:49:43 UTC (36 KB)
[v3] Fri, 11 Aug 2023 21:42:03 UTC (34 KB)
Current browse context:
math.LO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.